Table of Contents
ALTER DATABASE
SyntaxALTER LOGFILE GROUP
SyntaxALTER SERVER
SyntaxALTER TABLE
SyntaxALTER TABLESPACE
SyntaxCREATE DATABASE
SyntaxCREATE INDEX
SyntaxCREATE LOGFILE GROUP
SyntaxCREATE SERVER
SyntaxCREATE TABLE
SyntaxCREATE TABLESPACE
SyntaxDROP DATABASE
SyntaxDROP INDEX
SyntaxDROP LOGFILE GROUP
SyntaxDROP SERVER
SyntaxDROP TABLE
SyntaxDROP TABLESPACE
SyntaxRENAME DATABASE
SyntaxRENAME TABLE
SyntaxThis chapter describes the syntax for most of the SQL statements supported by MySQL. Additional statement descriptions can be found in the following chapters:
Statements for writing stored routines are covered in Chapter 23, Stored Procedures and Functions.
Statements for writing triggers are covered in Chapter 24, Triggers.
View-related statements are covered in Chapter 26, Views.
Statements for scheduling events are covered in Chapter 25, Event Scheduler.
ALTER DATABASE
SyntaxALTER LOGFILE GROUP
SyntaxALTER SERVER
SyntaxALTER TABLE
SyntaxALTER TABLESPACE
SyntaxCREATE DATABASE
SyntaxCREATE INDEX
SyntaxCREATE LOGFILE GROUP
SyntaxCREATE SERVER
SyntaxCREATE TABLE
SyntaxCREATE TABLESPACE
SyntaxDROP DATABASE
SyntaxDROP INDEX
SyntaxDROP LOGFILE GROUP
SyntaxDROP SERVER
SyntaxDROP TABLE
SyntaxDROP TABLESPACE
SyntaxRENAME DATABASE
SyntaxRENAME TABLE
SyntaxALTER {DATABASE | SCHEMA} [db_name
]alter_specification
... ALTER {DATABASE | SCHEMA}db_name
UPGRADE DATA DIRECTORY NAMEalter_specification
: [DEFAULT] CHARACTER SET [=]charset_name
| [DEFAULT] COLLATE [=]collation_name
ALTER DATABASE
enables you to change the
overall characteristics of a database. These characteristics are
stored in the db.opt
file in the database
directory. To use ALTER DATABASE
, you need
the ALTER
privilege on the database.
ALTER SCHEMA
is a synonym for ALTER
DATABASE
.
The CHARACTER SET
clause changes the default
database character set. The COLLATE
clause
changes the default database collation.
Section 9.1, “Character Set Support”, discusses character set and collation
names.
You can see what character sets and collations are available
using, respectively, the SHOW CHARACTER SET
and SHOW COLLATION
statements. See
Section 12.5.4.2, “SHOW CHARACTER SET
Syntax”, and
Section 12.5.4.3, “SHOW COLLATION
Syntax”, for more information.
The database name can be omitted from the first syntax, in which case the statement applies to the default database.
The syntax that includes the UPGRADE DATA DIRECTORY
NAME
clause was added in MySQL 5.1.23. It updates the
name of the directory associated with the database to use the
encoding implemented in MySQL 5.1 for mapping database names to
database directory names (see
Section 8.2.3, “Mapping of Identifiers to Filenames”). This clause is for use
under these conditions:
It is intended when upgrading MySQL to 5.1 or later from older versions.
It is intended to update a database directory name to the current encoding format if the name contains special characters that need encoding.
The statement is used by mysqlcheck (as invoked by mysql_upgrade).
For example,if a database in MySQL 5.0 has a name of
a-b-c
, the name contains instance of the
‘-
’ character. In 5.0, the
database directory is also named a-b-c
, which
is not necessarily safe for all filesystems. In MySQL 5.1 and
up, the same database name is encoded as
a@002db@002dc
to produce a filesystem-neutral
directory name.
When a MySQL installation is upgraded to MySQL 5.1 or later from
an older version,the server displays a name such as
a-b-c
(which is in the old format) as
#mysql50#a-b-c
, and you must refer to the
name using the #mysql50#
prefix. Use
UPGRADE DATA DIRECTORY NAME
in this case to
explicitly tell the server to re-encode the database directory
name to the current encoding format:
ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;
After executing this statement, you can refer to the database as
a-b-c
without the special
#mysql50#
prefix.
MySQL Enterprise In a production environment, alteration of a database is not a common occurrence and may indicate a security breach. Advisors provided as part of the MySQL Enterprise Monitor automatically alert you when data definition statements are issued. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
ALTER LOGFILE GROUPlogfile_group
ADD UNDOFILE 'file_name
' [INITIAL_SIZE [=]size
] [WAIT] ENGINE [=]engine_name
This statement adds an UNDO
file named
'file_name
' to an existing log file
group logfile_group
. An
ALTER LOGFILE GROUP
statement has one and
only one ADD UNDOFILE
clause. No
DROP UNDOFILE
clause is supported.
The optional INITIAL_SIZE
parameter sets the
UNDO
file's initial size in bytes; if not
specified, the initial size default to 128M
(128 megabytes). You may optionally follow
size
with a one-letter abbreviation
for an order of magnitude, similar to those used in
my.cnf
. Generally, this is one of the
letters M
(for megabytes) or
G
(for gigabytes).
On 32-bit systems, the maximum supported value for
INITIAL_SIZE
is 4G
. (Bug#29186)
WAIT
is parsed but otherwise ignored, and so
has no effect in MySQL 5.1. It is intended for
future expansion.
The ENGINE
parameter (required) determines
the storage engine which is used by this log file group, with
engine_name
being the name of the
storage engine. In MySQL 5.1, the only accepted values for
engine_name
are
NDB
and NDBCLUSTER
.
Here is an example, which assumes that the log file group
lg_3
has already been created using
CREATE LOGFILE GROUP
(see
Section 12.1.8, “CREATE LOGFILE GROUP
Syntax”):
ALTER LOGFILE GROUP lg_3 ADD UNDOFILE 'undo_10.dat' INITIAL_SIZE=32M ENGINE=NDB;
When ALTER LOGFILE GROUP
is used with
ENGINE = NDB
, an UNDO
log
file is created on each Cluster data node. You can verify that
the UNDO
files were created and obtain
information about them by querying the
INFORMATION_SCHEMA.FILES
table. For example:
mysql>SELECT FILE_NAME, LOGFILE_GROUP_NUMBER, EXTRA
->FROM INFORMATION_SCHEMA.FILES
->WHERE LOGFILE_GROUP_NAME = 'lg_3';
+-------------+----------------------+----------------+ | FILE_NAME | LOGFILE_GROUP_NUMBER | EXTRA | +-------------+----------------------+----------------+ | newdata.dat | 0 | CLUSTER_NODE=3 | | newdata.dat | 0 | CLUSTER_NODE=4 | | undo_10.dat | 11 | CLUSTER_NODE=3 | | undo_10.dat | 11 | CLUSTER_NODE=4 | +-------------+----------------------+----------------+ 4 rows in set (0.01 sec)
(See Section 27.21, “The INFORMATION_SCHEMA FILES
Table”.)
ALTER LOGFILE GROUP
was added in MySQL 5.1.6.
In MySQL 5.1, it is useful only with Disk Data storage for MySQL
Cluster. See Section 20.12, “MySQL Cluster Disk Data Tables”.
ALTER SERVERserver_name
OPTIONS (option
[,option
] ...)
Alters the server information for
,
adjusting the specified options as per the server_name
CREATE
SERVER
command. See Section 12.1.9, “CREATE SERVER
Syntax”.
The corresponding fields in the mysql.servers
table are updated accordingly. This statement requires the
SUPER
privilege.
For example, to update the USER
option:
ALTER SERVER s OPTIONS (USER 'sally');
ALTER SERVER
does not cause an automatic
commit.
ALTER SERVER
was added in MySQL 5.1.15.
ALTER [ONLINE | OFFLINE] [IGNORE] TABLEtbl_name
alter_specification
[,alter_specification
] ...alter_specification
:table_option
... | ADD [COLUMN]col_name
column_definition
[FIRST | AFTERcol_name
] | ADD [COLUMN] (col_name
column_definition
,...) | ADD {INDEX|KEY} [index_name
] [index_type
] (index_col_name
,...) [index_option
] ... | ADD [CONSTRAINT [symbol
]] PRIMARY KEY [index_type
] (index_col_name
,...) [index_option
] ... | ADD [CONSTRAINT [symbol
]] UNIQUE [INDEX|KEY] [index_name
] [index_type
] (index_col_name
,...) [index_option
] ... | ADD FULLTEXT [INDEX|KEY] [index_name
] (index_col_name
,...) [index_option
] ... | ADD SPATIAL [INDEX|KEY] [index_name
] (index_col_name
,...) [index_option
] ... | ADD [CONSTRAINT [symbol
]] FOREIGN KEY [index_name
] (index_col_name
,...)reference_definition
| ALTER [COLUMN]col_name
{SET DEFAULTliteral
| DROP DEFAULT} | CHANGE [COLUMN]old_col_name
new_col_name
column_definition
[FIRST|AFTERcol_name
] | MODIFY [COLUMN]col_name
column_definition
[FIRST | AFTERcol_name
] | DROP [COLUMN]col_name
| DROP PRIMARY KEY | DROP {INDEX|KEY}index_name
| DROP FOREIGN KEYfk_symbol
| DISABLE KEYS | ENABLE KEYS | RENAME [TO]new_tbl_name
| ORDER BYcol_name
[,col_name
] ... | CONVERT TO CHARACTER SETcharset_name
[COLLATEcollation_name
] | [DEFAULT] CHARACTER SET [=]charset_name
[COLLATE [=]collation_name
] | DISCARD TABLESPACE | IMPORT TABLESPACE |partition_options
| ADD PARTITION (partition_definition
) | DROP PARTITIONpartition_names
| COALESCE PARTITIONnumber
| REORGANIZE PARTITIONpartition_names
INTO (partition_definitions
) | ANALYZE PARTITIONpartition_names
| CHECK PARTITIONpartition_names
| OPTIMIZE PARTITIONpartition_names
| REBUILD PARTITIONpartition_names
| REPAIR PARTITIONpartition_names
| REMOVE PARTITIONINGindex_col_name
:col_name
[(length
)] [ASC | DESC]index_type
: USING {BTREE | HASH | RTREE}index_option
: KEY_BLOCK_SIZE [=]value
|index_type
| WITH PARSERparser_name
| COMMENT 'string
'
ALTER TABLE
enables you to change the
structure of an existing table. For example, you can add or
delete columns, create or destroy indexes, change the type of
existing columns, or rename columns or the table itself. You can
also change the comment for the table and type of the table.
The syntax for many of the allowable alterations is similar to
clauses of the CREATE TABLE
statement. See
Section 12.1.10, “CREATE TABLE
Syntax”, for more information.
Some operations may result in warnings if attempted on a table
for which the storage engine does not support the operation.
These warnings can be displayed with SHOW
WARNINGS
. See Section 12.5.4.32, “SHOW WARNINGS
Syntax”.
In most cases, ALTER TABLE
works by making a
temporary copy of the original table. The alteration is
performed on the copy, and then the original table is deleted
and the new one is renamed. While ALTER TABLE
is executing, the original table is readable by other clients.
Updates and writes to the table are stalled until the new table
is ready, and then are automatically redirected to the new table
without any failed updates. The temporary table is created in
the database directory of the new table. This can be different
from the database directory of the original table if
ALTER TABLE
is renaming the table to a
different database.
In some cases, no temporary table is necessary:
Alterations that modify only table metadata and not table
data can be made immediately by altering the table's
.frm
file and not touching table
contents. The following changes are fast alterations that
can be made this way:
Renaming a column or index.
Changing the default value of a column.
Changing the definition of an ENUM
or
SET
column by adding new enumeration
or set members to the end of the
list of valid member values.
In some cases, an operation such as changing a
VARCHAR(10)
column to
VARCHAR(15)
may be immediate, but this
depends on the storage engine for the table. A change such
as VARCHAR(10)
to a length greater than
255 is not immediate because data values must be modified
from using one byte to store the length to using two bytes.
If you use ALTER TABLE
without
any other options, MySQL simply renames any files that
correspond to the table tbl_name
RENAME TO
new_tbl_name
tbl_name
.
(You can also use the RENAME TABLE
statement to rename tables. See
Section 12.1.19, “RENAME TABLE
Syntax”.) Any privileges granted
specifically for the renamed table are not migrated to the
new name. They must be changed manually.
ALTER TABLE ... ADD PARTITION
creates no
temporary table except for MySQL Cluster.
ADD
or DROP
operations
for RANGE
or LIST
partitions are immediate operations or nearly so.
ADD
or COALESCE
operations for HASH
or
KEY
partitions copy data between changed
partitions; unless LINEAR HASH
or
LINEAR KEY
was used, this is much the
same as creating a new table (although the operation is done
partition by partition). REORGANIZE
operations copy only changed partitions and do not touch
unchanged ones.
If other cases, MySQL creates a temporary table, even if the
data wouldn't strictly need to be copied. For
MyISAM
tables, you can speed up the index
re-creation operation (which is the slowest part of the
alteration process) by setting the
myisam_sort_buffer_size
system variable to a
high value.
For information on troubleshooting ALTER
TABLE
, see Section B.1.7.1, “Problems with ALTER TABLE
”.
To use ALTER TABLE
, you need
ALTER
, INSERT
, and
CREATE
privileges for the table.
Beginning with MySQL 5.1.7, ADD INDEX
and
DROP INDEX
operations are performed
online when the indexes are on variable-width columns only.
The ONLINE
keyword can be used to perform
online ADD COLUMN
, ADD
INDEX
, and DROP INDEX
operations on NDB
tables beginning with
MySQL Cluster NDB 6.2.5 and MySQL Cluster NDB 6.3.3, as well
as online renaming of tables and columns. Online renaming
operations (but not online adding or dropping of columns or
indexes) are also supported for MyISAM
tables. Online operations are non-copying; that is, they do
not require that indexes be re-created, and they do not lock
the table being changed. Such operations do not require
single user mode for NDB
table
alterations made in a cluster with multiple API nodes;
transactions can continue uninterrupted during online DDL
operations.
The ONLINE
and OFFLINE
keywords are supported only in MySQL Cluster NDB 6.2 and 6.3
(beginning with versions 6.2.5 and 6.3.3). In other versions
of MySQL (5.1.17 and later):
The server determines automatically whether an
ADD INDEX
or DROP
INDEX
operation can be (and is) performed
online or offline; if the column is of a
variable-width data type, then the operation is
performed online. It is not possible to override the
server behavior in this regard.
Attempting to use the ONLINE
or
OFFLINE
keyword in an
ALTER TABLE
statement results in an
error.
Limitations.
Online ALTER TABLE
operations that add
columns are subject to the following limitations:
The table to be altered must have an explicit
primary key; the hidden primary key created by the
NDB
storage engine is not
sufficient for this purpose. Columns to be added
online must meet the following criteria:
Such columns must be dynamic; that is, it must
be possible to create them using
COLUMN_FORMAT DYNAMIC
.
Such columns must be nullable, and not have any
explicit default value other than
NULL
. Columns added online
are automatically created as DEFAULT
NULL
, as can be seen here:
mysql>CREATE TABLE t1 (
>c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
>) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (1.44 sec) mysql>ALTER ONLINE TABLE t1
>ADD COLUMN c2 INT,
>ADD COLUMN c3 INT;
Query OK, 0 rows affected, 2 warnings (0.93 sec) mysql>SHOW CREATE TABLE t2\G
*************************** 1. row *************************** Table: t2 Create Table: CREATE TABLE `t2` ( `c1` int(11) NOT NULL AUTO_INCREMENT, `c2` int(11) DEFAULT NULL, `c3` int(11) DEFAULT NULL, PRIMARY KEY (`c1`) ) ENGINE=ndbcluster DEFAULT CHARSET=latin1 1 row in set (0.00 sec)
Columns must be added following any existing
columns. If you attempt to add a column online
before any existing columns, the statement fails
with an error. Trying to add a column online
using the FIRST
keyword also
fails.
In addition, existing table columns cannot be reordered online.
The storage engine used by the table cannot be changed online.
These limitations do not apply to operations that merely rename tables or columns.
If the storage engine supports online ALTER
TABLE
, then fixed-format columns will be
converted to dynamic when columns are added online,
or when indexes are created or dropped online, as
shown here:
mysql>CREATE TABLE t1 (c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec) mysql>ALTER ONLINE TABLE t1 ADD COLUMN c2 INT, ADD COLUMN c3 INT;
Query OK, 0 rows affected, 2 warnings (0.93 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql>SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+ | Level | Code | Message | +---------+------+---------------------------------------------------------------+ | Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN | | Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN | +---------+------+---------------------------------------------------------------+ 2 rows in set (0.00 sec)
Existing columns, including the table's primary key, need not be dynamic; only the column or columns to be added online must be dynamic.
mysql>CREATE TABLE t2 (
>c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED
>) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec) mysql>ALTER ONLINE TABLE t2 ADD COLUMN c2 INT;
Query OK, 0 rows affected, 1 warning (0.78 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql>SHOW WARNINGS;
+---------+------+---------------------------------------------------------------+ | Level | Code | Message | +---------+------+---------------------------------------------------------------+ | Warning | 1475 | Converted FIXED field to DYNAMIC to enable on-line ADD COLUMN | +---------+------+---------------------------------------------------------------+ 1 row in set (0.00 sec)
Columns are not converted from
FIXED
to
DYNAMIC
column format by renaming
operations. For more information about
COLUMN_FORMAT
, see
Section 12.1.10, “CREATE TABLE
Syntax”.
Online DROP COLUMN
operations are
not supported.
A given online ALTER TABLE
can
use only one of ADD COLUMN
,
ADD INDEX
, or DROP
INDEX
. One or more columns can be added
online in a single statement; only one index may be
created or dropped online in a single statement.
The KEY
, CONSTRAINT
,
and IGNORE
keywords are supported in
ALTER TABLE
statements using the
ONLINE
keyword.
The ONLINE
and OFFLINE
keywords are also supported in ALTER TABLE ...
CHANGE ...
statements that rename columns.
The CREATE INDEX
and DROP
INDEX
statements also support online operations,
as well as the ONLINE
and
OFFLINE
keywords. See
Section 12.1.7, “CREATE INDEX
Syntax”, and
Section 12.1.13, “DROP INDEX
Syntax”, for more information.
IGNORE
is a MySQL extension to standard
SQL. It controls how ALTER TABLE
works if
there are duplicates on unique keys in the new table or if
warnings occur when strict mode is enabled. If
IGNORE
is not specified, the copy is
aborted and rolled back if duplicate-key errors occur. If
IGNORE
is specified, only the first row
is used of rows with duplicates on a unique key, The other
conflicting rows are deleted. Incorrect values are truncated
to the closest matching acceptable value.
table_option
signifies a table
option of the kind that can be used in the CREATE
TABLE
statement, such as
ENGINE
,
AUTO_INCREMENT
, or
AVG_ROW_LENGTH
.
(Section 12.1.10, “CREATE TABLE
Syntax”, lists all table options.)
However, ALTER TABLE
ignores the
DATA DIRECTORY
and INDEX
DIRECTORY
table options.
For example, to convert a table to be an
InnoDB
table, use this statement:
ALTER TABLE t1 ENGINE = InnoDB;
The outcome of attempting to change a table's storage engine
is affected by whether the desired storage engine is
available and the setting of the
NO_ENGINE_SUBSTITUTION
SQL mode, as
described in Section 5.1.7, “SQL Modes”.
As of MySQL 5.1.11, to prevent inadvertent loss of data,
ALTER TABLE
cannot be used to change the
storage engine of a table to MERGE
or
BLACKHOLE
.
To change the value of the AUTO_INCREMENT
counter to be used for new rows, do this:
ALTER TABLE t2 AUTO_INCREMENT = value
;
You cannot reset the counter to a value less than or equal
to any that have already been used. For
MyISAM
, if the value is less than or
equal to the maximum value currently in the
AUTO_INCREMENT
column, the value is reset
to the current maximum plus one. For
InnoDB
, if the value is less
than the current maximum value in the column, no error
occurs and the current sequence value is not
changed.
You can issue multiple ADD
,
ALTER
, DROP
, and
CHANGE
clauses in a single ALTER
TABLE
statement, separated by commas. This is a
MySQL extension to standard SQL, which allows only one of
each clause per ALTER TABLE
statement.
For example, to drop multiple columns in a single statement,
do this:
ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;
CHANGE
, col_name
DROP
, and
col_name
DROP INDEX
are MySQL extensions to
standard SQL.
MODIFY
is an Oracle extension to
ALTER TABLE
.
The word COLUMN
is optional and can be
omitted.
column_definition
clauses use the
same syntax for ADD
and
CHANGE
as for CREATE
TABLE
. See Section 12.1.10, “CREATE TABLE
Syntax”.
You can rename a column using a CHANGE
clause. To do so, specify the old and new column names and
the definition that the column currently has. For example,
to rename an old_col_name
new_col_name
column_definition
INTEGER
column from
a
to b
, you can do
this:
ALTER TABLE t1 CHANGE a b INTEGER;
If you want to change a column's type but not the name,
CHANGE
syntax still requires an old and
new column name, even if they are the same. For example:
ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;
You can also use MODIFY
to change a
column's type without renaming it:
ALTER TABLE t1 MODIFY b BIGINT NOT NULL;
If you use CHANGE
or
MODIFY
to shorten a column for which an
index exists on the column, and the resulting column length
is less than the index length, MySQL shortens the index
automatically.
When you change a data type using CHANGE
or MODIFY
, MySQL tries to convert
existing column values to the new type as well as possible.
This conversion may result in alteration of data. For
example, if you shorten a string column, values may be
truncated. To prevent the operation from succeeding if
conversions to the new data type would result in loss of
data, enable strict SQL mode before using ALTER
TABLE
(see Section 5.1.7, “SQL Modes”).
To add a column at a specific position within a table row,
use FIRST
or AFTER
. The default
is to add the column last. You can also use
col_name
FIRST
and AFTER
in
CHANGE
or MODIFY
operations to reorder columns within a table.
ALTER ... SET DEFAULT
or ALTER
... DROP DEFAULT
specify a new default value for a
column or remove the old default value, respectively. If the
old default is removed and the column can be
NULL
, the new default is
NULL
. If the column cannot be
NULL
, MySQL assigns a default value as
described in Section 10.1.4, “Data Type Default Values”.
DROP INDEX
removes an index. This is a
MySQL extension to standard SQL. See
Section 12.1.13, “DROP INDEX
Syntax”. If you are unsure of the index
name, use SHOW INDEX FROM
.
tbl_name
If columns are dropped from a table, the columns are also removed from any index of which they are a part. If all columns that make up an index are dropped, the index is dropped as well.
If a table contains only one column, the column cannot be
dropped. If what you intend is to remove the table, use
DROP TABLE
instead.
DROP PRIMARY KEY
drops the primary key.
If there is no primary key, an error occurs.
If you add a UNIQUE INDEX
or
PRIMARY KEY
to a table, it is stored
before any non-unique index so that MySQL can detect
duplicate keys as early as possible.
Some storage engines allow you to specify an index type when
creating an index. The syntax for the
index_type
specifier is
USING
. For details
about type_name
USING
, see
Section 12.1.7, “CREATE INDEX
Syntax”. Before MySQL 5.1.10,
USING
can be given only before the index
column list. As of 5.1.10, the preferred position is after
the column list. Use of the option before the column list
will no longer be recognized as of MySQL 5.3.
index_option
values specify
additional options for an index. USING
is
one such option. For details about allowable
index_option
values, see
Section 12.1.7, “CREATE INDEX
Syntax”.
After an ALTER TABLE
statement, it may be
necessary to run ANALYZE TABLE
to update
index cardinality information. See
Section 12.5.4.18, “SHOW INDEX
Syntax”.
ORDER BY
enables you to create the new
table with the rows in a specific order. Note that the table
does not remain in this order after inserts and deletes.
This option is useful primarily when you know that you are
mostly to query the rows in a certain order most of the
time. By using this option after major changes to the table,
you might be able to get higher performance. In some cases,
it might make sorting easier for MySQL if the table is in
order by the column that you want to order it by later.
ORDER BY
syntax allows for one or more
column names to be specified for sorting, each of which
optionally can be followed by ASC
or
DESC
to indicate ascending or descending
sort order, respectively. The default is ascending order.
Only column names are allowed as sort criteria; arbitrary
expressions are not allowed.
ORDER BY
does not make sense for
InnoDB
tables that contain a user-defined
clustered index (PRIMARY KEY
or
NOT NULL UNIQUE
index).
InnoDB
always orders table rows according
to such an index if one is present.
When used on a partitioned table, ALTER TABLE ...
ORDER BY
orders rows within each partition only.
If you use ALTER TABLE
on a
MyISAM
table, all non-unique indexes are
created in a separate batch (as for REPAIR
TABLE
). This should make ALTER
TABLE
much faster when you have many indexes.
This feature can be activated explicitly for a
MyISAM
table. ALTER TABLE ...
DISABLE KEYS
tells MySQL to stop updating
non-unique indexes. ALTER TABLE ... ENABLE
KEYS
then should be used to re-create missing
indexes. MySQL does this with a special algorithm that is
much faster than inserting keys one by one, so disabling
keys before performing bulk insert operations should give a
considerable speedup. Using ALTER TABLE ... DISABLE
KEYS
requires the INDEX
privilege in addition to the privileges mentioned earlier.
While the non-unique indexes are disabled, they are ignored
for statements such as SELECT
and
EXPLAIN
that otherwise would use them.
ENABLE KEYS
and DISABLE
KEYS
were not supported for partitioned tables
prior to MySQL 5.1.11.
If ALTER TABLE
for an
InnoDB
table results in changes to column
values (for example, because a column is truncated),
InnoDB
's FOREIGN KEY
constraint checks do not notice possible violations caused
by changing the values.
The FOREIGN KEY
and
REFERENCES
clauses are supported by the
InnoDB
storage engine, which implements
ADD [CONSTRAINT
[
. See
Section 13.5.6.4, “symbol
]] FOREIGN KEY (...)
REFERENCES ... (...)FOREIGN KEY
Constraints”. For other
storage engines, the clauses are parsed but ignored. The
CHECK
clause is parsed but ignored by all
storage engines. See Section 12.1.10, “CREATE TABLE
Syntax”. The
reason for accepting but ignoring syntax clauses is for
compatibility, to make it easier to port code from other SQL
servers, and to run applications that create tables with
references. See Section 1.8.5, “MySQL Differences from Standard SQL”.
The inline REFERENCES
specifications
where the references are defined as part of the column
specification are silently ignored by
InnoDB
. InnoDB only accepts
REFERENCES
clauses defined as part of a
separate FOREIGN KEY
specification.
Partitioned tables do not support foreign keys. See Section 21.5, “Restrictions and Limitations on Partitioning”, for more information.
InnoDB
supports the use of ALTER
TABLE
to drop foreign keys:
ALTER TABLEtbl_name
DROP FOREIGN KEYfk_symbol
;
For more information, see
Section 13.5.6.4, “FOREIGN KEY
Constraints”.
You cannot add a foreign key and drop a foreign key in
separate clauses of a single ALTER TABLE
statement. You must use separate statements.
For an InnoDB
table that is created with
its own tablespace in an .ibd
file,
that file can be discarded and imported. To discard the
.ibd
file, use this statement:
ALTER TABLE tbl_name
DISCARD TABLESPACE;
This deletes the current .ibd
file, so
be sure that you have a backup first. Attempting to access
the table while the tablespace file is discarded results in
an error.
To import the backup .ibd
file back
into the table, copy it into the database directory, and
then issue this statement:
ALTER TABLE tbl_name
IMPORT TABLESPACE;
Pending INSERT DELAYED
statements are
lost if a table is write locked and ALTER
TABLE
is used to modify the table structure.
If you want to change the table default character set and
all character columns (CHAR
,
VARCHAR
, TEXT
) to a
new character set, use a statement like this:
ALTER TABLEtbl_name
CONVERT TO CHARACTER SETcharset_name
;
For a column that has a data type of
VARCHAR
or one of the
TEXT
types, CONVERT TO CHARACTER
SET
will change the data type as necessary to
ensure that the new column is long enough to store as many
characters as the original column. For example, a
TEXT
column has two length bytes, which
store the byte-length of values in the column, up to a
maximum of 65,535. For a latin1
TEXT
column, each character requires a
single byte, so the column can store up to 65,535
characters. If the column is converted to
utf8
, each character might require up to
three bytes, for a maximum possible length of 3 ×
65,535 = 196,605 bytes. That length will not fit in a
TEXT
column's length bytes, so MySQL will
convert the data type to MEDIUMTEXT
,
which is the smallest string type for which the length bytes
can record a value of 196,605. Similarly, a
VARCHAR
column might be converted to
MEDIUMTEXT
.
To avoid data type changes of the type just described, do
not use CONVERT TO CHARACTER SET
.
Instead, use MODIFY
to change individual
columns. For example:
ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M
) CHARACTER SET utf8;
If you specify CONVERT TO CHARACTER SET
binary
, the CHAR
,
VARCHAR
, and TEXT
columns are converted to their corresponding binary string
types (BINARY
,
VARBINARY
, BLOB
). This
means that the columns no longer will have a character set
and a subsequent CONVERT TO
operation
will not apply to them.
If charset_name
is
DEFAULT
, the database character set is
used.
The CONVERT TO
operation converts
column values between the character sets. This is
not what you want if you have a
column in one character set (like
latin1
) but the stored values actually
use some other, incompatible character set (like
utf8
). In this case, you have to do the
following for each such column:
ALTER TABLE t1 CHANGE c1 c1 BLOB; ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;
The reason this works is that there is no conversion when
you convert to or from BLOB
columns.
To change only the default character set for a table, use this statement:
ALTER TABLEtbl_name
DEFAULT CHARACTER SETcharset_name
;
The word DEFAULT
is optional. The default
character set is the character set that is used if you do
not specify the character set for columns that you add to a
table later (for example, with ALTER TABLE ... ADD
column
).
A number of partitioning-related extensions to
ALTER TABLE
were added in MySQL 5.1.5.
These can be used with partitioned tables for
repartitioning, for adding, dropping, merging, and splitting
partitions, and for performing partitioning maintenance.
Simply using a partition_options
clause with ALTER TABLE
on a partitioned
table repartitions the table according to the partitioning
scheme defined by the
partition_options
. This clause
always begins with PARTITION BY
, and
follows the same syntax and other rules as apply to the
partition_options
clause for
CREATE TABLE
(see
Section 12.1.10, “CREATE TABLE
Syntax”, for more detailed
information), and can also be used to partition an existing
table that is not already partitioned. For example, consider
a (non-partitioned) table defined as shown here:
CREATE TABLE t1 ( id INT, year_col INT );
This table can be partitioned by HASH
,
using the id
column as the partitioning
key, into 8 partitions by means of this statement:
ALTER TABLE t1 PARTITION BY HASH(id) PARTITIONS 8;
The table that results from using an ALTER TABLE
... PARTITION BY
statement must follow the same
rules as one created using CREATE TABLE ...
PARTITION BY
. This includes the rules governing
the relationship between any unique keys (including any
primary key) that the table might have, and the column or
columns used in the partitioning expression, as discussed in
Section 21.5.1, “Partitioning Keys, Primary Keys, and Unique Keys”.
The CREATE TABLE ... PARTITION BY
rules
for specifying the number of partitions also apply to
ALTER TABLE ... PARTITION BY
.
ALTER TABLE ... PARTITION BY
became
available in MySQL 5.1.6.
The partition_definition
clause
for ALTER TABLE ADD PARTITION
supports
the same options as the clause of the same name for the
CREATE TABLE
statement. (See
Section 12.1.10, “CREATE TABLE
Syntax”, for the syntax and
description.) Suppose that you have the partitioned table
created as shown here:
CREATE TABLE t1 ( id INT, year_col INT ) PARTITION BY RANGE (year_col) ( PARTITION p0 VALUES LESS THAN (1991), PARTITION p1 VALUES LESS THAN (1995), PARTITION p2 VALUES LESS THAN (1999) );
You can add a new partition p3
to this
table for storing values less than 2002
as follows:
ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));
DROP PARTITION
can be used to drop one or
more RANGE
or LIST
partitions. This statement cannot be used with
HASH
or KEY
partitions; instead, use COALESCE
PARTITION
(see below). Any data that was stored in
the dropped partitions named in the
partition_names
list is
discarded. For example, given the table
t1
defined previously, you can drop the
partitions named p0
and
p1
as shown here:
ALTER TABLE t1 DROP PARTITION p0, p1;
DROP PARTITION
does not work with
tables that use the NDBCLUSTER
storage
engine. See
Section 21.3.1, “Management of RANGE
and LIST
Partitions”, and
Section 20.14, “Known Limitations of MySQL Cluster”.
ADD PARTITION
and DROP
PARTITION
do not currently support IF
[NOT] EXISTS
. It is also not possible to rename a
partition or a partitioned table. Instead, if you wish to
rename a partition, you must drop and re-create the
partition; if you wish to rename a partitioned table, you
must instead drop all partitions, rename the table, and then
add back the partitions that were dropped.
COALESCE PARTITION
can be used with a
table that is partitioned by HASH
or
KEY
to reduce the number of partitions by
number
. Suppose that you have
created table t2
using the following
definition:
CREATE TABLE t2 ( name VARCHAR (30), started DATE ) PARTITION BY HASH( YEAR(started) ) PARTITIONS 6;
You can reduce the number of partitions used by
t2
from 6 to 4 using the following
statement:
ALTER TABLE t2 COALESCE PARTITION 2;
The data contained in the last
number
partitions will be merged
into the remaining partitions. In this case, partitions 4
and 5 will be merged into the first 4 partitions (the
partitions numbered 0, 1, 2, and 3).
To change some but not all the partitions used by a
partitioned table, you can use REORGANIZE
PARTITION
. This statement can be used in several
ways:
To merge a set of partitions into a single partition.
This can be done by naming several partitions in the
partition_names
list and
supplying a single definition for
partition_definition
.
To split an existing partition into several partitions.
You can accomplish this by naming a single partition for
partition_names
and providing
multiple
partition_definitions
.
To change the ranges for a subset of partitions defined
using VALUES LESS THAN
or the value
lists for a subset of partitions defined using
VALUES IN
.
For partitions that have not been explicitly named, MySQL
automatically provides the default names
p0
, p1
,
p2
, and so on. As of MySQL 5.1.7, the
same is true with regard to subpartitions.
For more detailed information about and examples of
ALTER TABLE ... REORGANIZE PARTITION
statements, see Section 21.3, “Partition Management”.
Only a single PARTITION BY
,
ADD PARTITION
, DROP
PARTITION
, REORGANIZE
PARTITION
, or COALESCE
PARTITION
clause can be used in a given
ALTER TABLE
statement.
Several additional options were introduced in MySQL 5.1.5
for providing partition maintenance and repair functionality
analogous to that implemented for non-partitioned tables by
statements such as CHECK TABLE
and
REPAIR TABLE
(which are
not supported for partitioned tables).
These include ANALYZE PARTITION
,
CHECK PARTITION
, OPTIMIZE
PARTITION
, REBUILD PARTITION
,
and REPAIR PARTITION
. Each of these
options takes a partition_names
clause consisting of one or more names of partitions,
separated by commas. The partitions must already exist in
the table to be altered. For more information and examples,
see Section 21.3.3, “Maintenance of Partitions”.
The ANALYZE PARTITION
, CHECK
PARTITION
, OPTIMIZE PARTITION
,
and REPAIR PARTITION
options were removed
in MySQL 5.1.24.
REMOVE PARTITIONING
was introduced in
MySQL 5.1.8 for the purpose of removing a table's
partitioning without otherwise affecting the table or its
data. (Previously, this was done using the ENGINE
option.) This option can be combined with other
ALTER TABLE
options such as those used to
add, drop, or rename drop columns or indexes.
In MySQL 5.1.7 and earlier, using the
ENGINE
option with ALTER
TABLE
caused any partitioning that a table might
have had to be removed. Beginning with MySQL 5.1.8, this
option merely changes the storage engine used by the table
and no longer affects partitioning in any way.
With the mysql_info()
C API
function, you can find out how many rows were copied, and (when
IGNORE
is used) how many rows were deleted
due to duplication of unique key values. See
Section 29.2.3.35, “mysql_info()
”.
Here are some examples that show uses of ALTER
TABLE
. Begin with a table t1
that
is created as shown here:
CREATE TABLE t1 (a INTEGER,b CHAR(10));
To rename the table from t1
to
t2
:
ALTER TABLE t1 RENAME t2;
To change column a
from
INTEGER
to TINYINT NOT
NULL
(leaving the name the same), and to change column
b
from CHAR(10)
to
CHAR(20)
as well as renaming it from
b
to c
:
ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);
To add a new TIMESTAMP
column named
d
:
ALTER TABLE t2 ADD d TIMESTAMP;
To add an index on column d
and a
UNIQUE
index on column a
:
ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);
To remove column c
:
ALTER TABLE t2 DROP COLUMN c;
To add a new AUTO_INCREMENT
integer column
named c
:
ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT, ADD PRIMARY KEY (c);
Note that we indexed c
(as a PRIMARY
KEY
) because AUTO_INCREMENT
columns
must be indexed, and also that we declare c
as NOT NULL
because primary key columns
cannot be NULL
.
When you add an AUTO_INCREMENT
column, column
values are filled in with sequence numbers automatically. For
MyISAM
tables, you can set the first sequence
number by executing SET
INSERT_ID=
before
value
ALTER TABLE
or by using the
AUTO_INCREMENT=
table option. See Section 12.5.3, “value
SET
Syntax”.
With MyISAM
tables, if you do not change the
AUTO_INCREMENT
column, the sequence number is
not affected. If you drop an AUTO_INCREMENT
column and then add another AUTO_INCREMENT
column, the numbers are resequenced beginning with 1.
When replication is used, adding an
AUTO_INCREMENT
column to a table might not
produce the same ordering of the rows on the slave and the
master. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the
table and the order in which the rows were inserted. If it is
important to have the same order on the master and slave, the
rows must be ordered before assigning an
AUTO_INCREMENT
number. Assuming that you want
to add an AUTO_INCREMENT
column to the table
t1
, the following statements produce a new
table t2
identical to t1
but with an AUTO_INCREMENT
column:
CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY) SELECT * FROM t1 ORDER BY col1, col2;
This assumes that the table t1
has columns
col1
and col2
.
This set of statements will also produce a new table
t2
identical to t1
, with
the addition of an AUTO_INCREMENT
column:
CREATE TABLE t2 LIKE t1; ALTER TABLE T2 ADD id INT AUTO_INCREMENT PRIMARY KEY; INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;
To guarantee the same ordering on both master and slave,
all columns of t1
must
be referenced in the ORDER BY
clause.
Regardless of the method used to create and populate the copy
having the AUTO_INCREMENT
column, the final
step is to drop the original table and then rename the copy:
DROP t1; ALTER TABLE t2 RENAME t1;
ALTER TABLESPACEtablespace_name
{ADD|DROP} DATAFILE 'file_name
' [INITIAL_SIZE [=]size
] [WAIT] ENGINE [=]engine_name
This statement can be used either to add a new data file, or to drop a data file from a tablespace.
The ADD DATAFILE
variant allows you to
specify an initial size using an INITIAL_SIZE
clause, where size
is measured in
bytes; the default value is 128M
(128
megabytes). You may optionally follow this integer value with a
one-letter abbreviation for an order of magnitude, similar to
those used in my.cnf
. Generally, this is
one of the letters M
(for megabytes) or
G
(for gigabytes).
On 32-bit systems, the maximum supported value for
INITIAL_SIZE
is 4G
. (Bug#29186)
Once a data file has been created, its size cannot be changed;
however, you can add more data files to the tablespace using
additional ALTER TABLESPACE ... ADD DATAFILE
statements.
Using DROP DATAFILE
with ALTER
TABLESPACE
drops the data file
'file_name
' from the tablespace. This
file must already have been added to the tablespace using
CREATE TABLESPACE
or ALTER
TABLESPACE
; otherwise an error will result.
Both ALTER TABLESPACE ... ADD DATAFILE
and
ALTER TABLESPACE ... DROP DATAFILE
require an
ENGINE
clause which specifies the storage
engine used by the tablespace. In MySQL 5.1, the only accepted
values for engine_name
are
NDB
and NDBCLUSTER
.
WAIT
is parsed but otherwise ignored, and so
has no effect in MySQL 5.1. It is intended for
future expansion.
When ALTER TABLESPACE ... ADD DATAFILE
is
used with ENGINE = NDB
, a data file is
created on each Cluster data node. You can verify that the data
files were created and obtain information about them by querying
the INFORMATION_SCHEMA.FILES
table. For
example, the following query shows all data files belonging to
the tablespace named newts
:
mysql>SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
->FROM INFORMATION_SCHEMA.FILES
->WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+--------------+----------------+ | LOGFILE_GROUP_NAME | FILE_NAME | EXTRA | +--------------------+--------------+----------------+ | lg_3 | newdata.dat | CLUSTER_NODE=3 | | lg_3 | newdata.dat | CLUSTER_NODE=4 | | lg_3 | newdata2.dat | CLUSTER_NODE=3 | | lg_3 | newdata2.dat | CLUSTER_NODE=4 | +--------------------+--------------+----------------+ 2 rows in set (0.03 sec)
See Section 27.21, “The INFORMATION_SCHEMA FILES
Table”.
ALTER TABLESPACE
was added in MySQL 5.1.6. In
MySQL 5.1, it is useful only with Disk Data storage for MySQL
Cluster. See Section 20.12, “MySQL Cluster Disk Data Tables”.
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS]db_name
[create_specification
] ...create_specification
: [DEFAULT] CHARACTER SET [=]charset_name
| [DEFAULT] COLLATE [=]collation_name
CREATE DATABASE
creates a database with the
given name. To use this statement, you need the
CREATE
privilege for the database.
CREATE SCHEMA
is a synonym for
CREATE DATABASE
.
An error occurs if the database exists and you did not specify
IF NOT EXISTS
.
create_specification
options specify
database characteristics. Database characteristics are stored in
the db.opt
file in the database directory.
The CHARACTER SET
clause specifies the
default database character set. The COLLATE
clause specifies the default database collation.
Section 9.1, “Character Set Support”, discusses character set and collation
names.
A database in MySQL is implemented as a directory containing
files that correspond to tables in the database. Because there
are no tables in a database when it is initially created, the
CREATE DATABASE
statement creates only a
directory under the MySQL data directory and the
db.opt
file. Rules for allowable database
names are given in Section 8.2, “Schema Object Names”. If a database
name contains special characters, the name for the database
directory contains encoded versions of those characters as
described in Section 8.2.3, “Mapping of Identifiers to Filenames”.
If you manually create a directory under the data directory (for
example, with mkdir), the server considers it
a database directory and it shows up in the output of
SHOW DATABASES
.
You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.
CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEXindex_name
[index_type
] ONtbl_name
(index_col_name
,...) [index_option
] ...index_col_name
:col_name
[(length
)] [ASC | DESC]index_type
: USING {BTREE | HASH | RTREE}index_option
: KEY_BLOCK_SIZE [=]value
|index_type
| WITH PARSERparser_name
CREATE INDEX
is mapped to an ALTER
TABLE
statement to create indexes. See
Section 12.1.4, “ALTER TABLE
Syntax”. CREATE INDEX
cannot be used to create a PRIMARY KEY
; use
ALTER TABLE
instead. For more information
about indexes, see Section 7.4.5, “How MySQL Uses Indexes”.
Normally, you create all indexes on a table at the time the
table itself is created with CREATE TABLE
.
See Section 12.1.10, “CREATE TABLE
Syntax”. CREATE
INDEX
enables you to add indexes to existing tables.
A column list of the form (col1,col2,...)
creates a multiple-column index. Index values are formed by
concatenating the values of the given columns.
Indexes can be created that use only the leading part of column
values, using
syntax to specify an index prefix length:
col_name
(length
)
Prefixes can be specified for CHAR
,
VARCHAR
, BINARY
, and
VARBINARY
columns.
BLOB
and TEXT
columns
also can be indexed, but a prefix length
must be given.
Prefix lengths are given in characters for non-binary string
types and in bytes for binary string types. That is, index
entries consist of the first
length
characters of each column
value for CHAR
,
VARCHAR
, and TEXT
columns, and the first length
bytes of each column value for BINARY
,
VARBINARY
, and BLOB
columns.
For spatial columns, prefix values cannot be given, as described later in this section.
The statement shown here creates an index using the first 10
characters of the name
column:
CREATE INDEX part_of_name ON customer (name(10));
If names in the column usually differ in the first 10
characters, this index should not be much slower than an index
created from the entire name
column. Also,
using column prefixes for indexes can make the index file much
smaller, which could save a lot of disk space and might also
speed up INSERT
operations.
Prefix lengths are storage engine-dependent (for example, a
prefix can be up to 1000 bytes long for
MyISAM
tables, 767 bytes for
InnoDB
tables). Note that prefix limits are
measured in bytes, whereas the prefix length in CREATE
INDEX
statements is interpreted as number of
characters for non-binary data types (CHAR
,
VARCHAR
, TEXT
). Take this
into account when specifying a prefix length for a column that
uses a multi-byte character set. For example,
utf8
columns require up to three index bytes
per character.
Beginning with MySQL 5.1.7, indexes on variable-width columns are created online; that is, creating the indexes does not require any copying or locking of the table. This is done automatically by the server whenever it determines that it is possible to do so; you do not have to use any special SQL syntax or server options to cause it to happen.
In standard MySQL 5.1 releases, it is not possible
to override the server when it determines that an index is to be
created online. In MySQL Cluster, beginning with MySQL Cluster
NDB 6.2.5 and MySQL Cluster NDB 6.3.3, you can create indexes
offline (which causes the table to be locked) using the
OFFLINE
keyword. The rules and limitations
governing online CREATE OFFLINE INDEX
and
CREATE ONLINE INDEX
are the same as for
ALTER OFFLINE TABLE ... ADD INDEX
and
ALTER ONLINE TABLE ... ADD INDEX
. You cannot
cause the online creation of an index that would normally be
created offline by using the ONLINE
keyword
(if it is not possible to perform the CREATE
INDEX
operation online, then the
ONLINE
keyword is ignored). For more
information, see Section 12.1.4, “ALTER TABLE
Syntax”.
The ONLINE
and OFFLINE
keywords are available only in MySQL Cluster NDB 6.2 and MySQL
Cluster NDB 6.3 releases beginning with versions 6.2.5 and
6.3.3, respectively; attempting to use them in earlier MySQL
Cluster NDB 6.2 or 6.3 releases, standard MySQL 5.1 releases,
or MySQL Cluster NDB 6.1 releases results in a syntax error.
A UNIQUE
index creates a constraint such that
all values in the index must be distinct. An error occurs if you
try to add a new row with a key value that matches an existing
row. For all engines, a UNIQUE
index allows
multiple NULL
values for columns that can
contain NULL
. If you specify a prefix value
for a column in a UNIQUE
index, the column
values must be unique within the prefix.
MySQL Enterprise Lack of proper indexes can greatly reduce performance. Subscribe to the MySQL Enterprise Monitor for notification of inefficient use of indexes. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
FULLTEXT
indexes are supported only for
MyISAM
tables and can include only
CHAR
, VARCHAR
, and
TEXT
columns. Indexing always happens over
the entire column; column prefix indexing is not supported and
any prefix length is ignored if specified. See
Section 11.8, “Full-Text Search Functions”, for details of operation.
The MyISAM
, InnoDB
,
NDB
, BDB
, and
ARCHIVE
storage engines support spatial
columns such as (POINT
and
GEOMETRY
.
(Chapter 22, Spatial Extensions, describes the spatial
data types.) However, support for spatial column indexing varies
among engines. Spatial and non-spatial indexes are available
according to the following rules.
Spatial indexes (created using SPATIAL
INDEX
):
Available only for MyISAM
tables.
Specifying a SPATIAL INDEX
for other
storage engines results in an error.
Indexed columns must be NOT NULL
.
In MySQL 5.1, column prefix lengths are prohibited. The full width of each column is indexed.
Non-spatial indexes (created with INDEX
,
UNIQUE
, or PRIMARY KEY
):
Allowed for any storage engine that supports spatial columns
except ARCHIVE
.
Columns can be NULL
unless the index is a
primary key.
For each spatial column in a non-SPATIAL
index except POINT
columns, a column
prefix length must be specified. (This is the same
requirement as for indexed BLOB
columns.)
The prefix length is given in bytes.
The index type for a non-SPATIAL
index
depends on the storage engine. Currently, B-tree is used.
In MySQL 5.1:
You can add an index on a column that can have
NULL
values only if you are using the
MyISAM
, InnoDB
, or
MEMORY
storage engine.
You can add an index on a BLOB
or
TEXT
column only if you are using the
MyISAM
, or InnoDB
storage engine.
An index_col_name
specification can
end with ASC
or DESC
.
These keywords are allowed for future extensions for specifying
ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending
order.
As of MySQL 5.1.10, index options can be given following the
index column list. An index_option
value can be any of the following:
KEY_BLOCK_SIZE [=]
value
This option provides a hint to the storage engine about the size in bytes to use for index key blocks. The engine is allowed to change the value if necessary. A value of 0 indicates that the default value should be used.
index_type
Some storage engines allow you to specify an index type when creating an index. The allowable index type values supported by different storage engines are shown in the following table. Where multiple index types are listed, the first one is the default when no index type specifier is given.
Storage Engine | Allowable Index Types |
MyISAM | BTREE , RTREE |
InnoDB | BTREE |
MEMORY /HEAP | HASH , BTREE |
NDB | HASH , BTREE (see note in text) |
BTREE
indexes are implemented by the
NDBCLUSTER
storage engine as T-tree
indexes.
For indexes on NDBCLUSTER
table
columns, the USING
clause can be
specified only for a unique index or primary key. In such
cases, the USING HASH
clause prevents
the creation of an implicit ordered index. Without
USING HASH
, a statement defining a
unique index or primary key automatically results in the
creation of a HASH
index in addition to
the ordered index, both of which index the same set of
columns.
The RTREE
index type is allowable only
for SPATIAL
indexes.
If you specify an index type that is not legal for a given storage engine, but there is another index type available that the engine can use without affecting query results, the engine uses the available type.
Examples:
CREATE TABLE lookup (id INT) ENGINE = MEMORY; CREATE INDEX id_index USING BTREE ON lookup (id);
TYPE
is recognized as a synonym for type_name
USING
. However,
type_name
USING
is the preferred form.
Before MySQL 5.1.10, this option can be given only before
the ON
clause. Use of
the option in this position is deprecated as of 5.1.10;
support for it is to be dropped in a future MySQL release.
If an tbl_name
index_type
option is given in both
the earlier and later positions, the final option applies.
WITH PARSER
parser_name
This option can be used only with
FULLTEXT
indexes. It associates a parser
plugin with the index if full-text indexing and searching
operations need special handling. See
Section 31.2, “The MySQL Plugin Interface”, for details on creating
plugins.
CREATE LOGFILE GROUPlogfile_group
ADD UNDOFILE 'undo_file
' [INITIAL_SIZE [=]initial_size
] [UNDO_BUFFER_SIZE [=]undo_buffer_size
] [REDO_BUFFER_SIZE [=]redo_buffer_size
] [NODEGROUP [=]nodegroup_id
] [WAIT] [COMMENT [=]comment_text
] ENGINE [=]engine_name
This statement creates a new log file group named
logfile_group
having a single
UNDO
file named
'undo_file
'. A CREATE
LOGFILE GROUP
statement has one and only one
ADD UNDOFILE
clause. For rules covering the
naming of log file groups, see Section 8.2, “Schema Object Names”.
Beginning with MySQL 5.1.8, you can have only one log file group per Cluster at any given time. (See Bug#16386)
The optional INITIAL_SIZE
parameter sets the
UNDO
file's initial size; if not specified,
it defaults to 128M
(128 megabytes). The
optional UNDO_BUFFFER_SIZE
parameter sets the
size used by the UNDO
buffer for the log file
group; The default value for UNDO_BUFFER_SIZE
is 8M
(eight megabytes); this value cannot
exceed the amount of system memory available. Both of these
parameters are specified in bytes. You may optionally follow
either or both of these with a one-letter abbreviation for an
order of magnitude, similar to those used in
my.cnf
. Generally, this is one of the
letters M
(for megabytes) or
G
(for gigabytes).
On 32-bit systems, the maximum supported value for
INITIAL_SIZE
is 4G
. (Bug#29186)
The ENGINE
parameter determines the storage
engine to be used by this log file group, with
engine_name
being the name of the
storage engine. In MySQL 5.1.
engine_name
must be one of the values
NDB
or NDBCLUSTER
.
REDO_BUFFER_SIZE
,
NODEGROUP
, WAIT
, and
COMMENT
are parsed but ignored, and so have
no effect in MySQL 5.1. These options are intended
for future expansion.
When used with ENGINE [=] NDB
, a log file
group and associated UNDO
log file are
created on each Cluster data node. You can verify that the
UNDO
files were created and obtain
information about them by querying the
INFORMATION_SCHEMA.FILES
table. For example:
mysql>SELECT LOGFILE_GROUP_NAME, LOGFILE_GROUP_NUMBER, EXTRA
->FROM INFORMATION_SCHEMA.FILES
->WHERE FILE_NAME = 'undo_10.dat';
+--------------------+----------------------+----------------+ | LOGFILE_GROUP_NAME | LOGFILE_GROUP_NUMBER | EXTRA | +--------------------+----------------------+----------------+ | lg_3 | 11 | CLUSTER_NODE=3 | | lg_3 | 11 | CLUSTER_NODE=4 | +--------------------+----------------------+----------------+ 2 rows in set (0.06 sec)
(See Section 27.21, “The INFORMATION_SCHEMA FILES
Table”.)
CREATE LOGFILE GROUP
was added in MySQL
5.1.6. In MySQL 5.1, it is useful only with Disk Data storage
for MySQL Cluster. See
Section 20.12, “MySQL Cluster Disk Data Tables”.
CREATE SERVERserver_name
FOREIGN DATA WRAPPERwrapper_name
OPTIONS (option
[,option
] ...)option
: { HOSTcharacter-literal
| DATABASEcharacter-literal
| USERcharacter-literal
| PASSWORDcharacter-literal
| SOCKETcharacter-literal
| OWNERcharacter-literal
| PORTnumeric-literal
}
This statement creates the definition of a server for use with
the FEDERATED
storage engine. The
CREATE SERVER
statement creates a new row
within the servers
table within the
mysql
database. This statement requires the
SUPER
privilege.
The
should be a unique reference to the server. Server definitions
are global within the scope of the server, it is not possible to
qualify the server definition to a specific database.
server_name
has a
maximum length of 64 characters (names longer than 64 characters
are silently truncated), and is case insensitive. You may
specify the name as a quoted string.
server_name
The
should be wrapper_name
mysql
, and may be quoted with
single quotes. Other values for
are
not currently supported.
wrapper_name
For each
you must specify either a character literal or numeric literal.
Character literals are UTF-8, support a maximum length of 64
characters and default to a blank (empty) string. String
literals are silently truncated to 64 characters. Numeric
literals must be a number between 0 and 9999, default value is
0.
option
Note that the OWNER
option is currently not
applied, and has no effect on the ownership or operation of
the server connection that is created.
The CREATE SERVER
statement creates an entry
in the mysql.server
table that can later be
used with the CREATE TABLE
statement when
creating a FEDERATED
table. The options that
you specify will be used to populate the columns in the
mysql.server
table. The table columns are
Server_name
, Host
,
Db
, Username
,
Password
, Port
and
Socket
.
For example:
CREATE SERVER s FOREIGN DATA WRAPPER mysql OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');
The data stored in the table can be used when creating a
connection to a FEDERATED
table:
CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';
For more information, see
Section 13.9, “The FEDERATED
Storage Engine”.
CREATE SERVER
does not cause an automatic
commit.
CREATE SERVER
was added in MySQL 5.1.15.
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]tbl_name
(create_definition
,...) [table_option
] ... [partition_options
]
Or:
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]tbl_name
[(create_definition
,...)] [table_option
] ... [partition_options
]select_statement
Or:
CREATE [TEMPORARY] TABLE [IF NOT EXISTS]tbl_name
{ LIKEold_tbl_name
| (LIKEold_tbl_name
) }
create_definition
:col_name
column_definition
| [CONSTRAINT [symbol
]] PRIMARY KEY [index_type
] (index_col_name
,...) [index_option
] ... | {INDEX|KEY} [index_name
] [index_type
] (index_col_name
,...) [index_option
] ... | [CONSTRAINT [symbol
]] UNIQUE [INDEX|KEY] [index_name
] [index_type
] (index_col_name
,...) [index_option
] ... | {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name
] (index_col_name
,...) [index_option
] ... | [CONSTRAINT [symbol
]] FOREIGN KEY [index_name
] (index_col_name
,...)reference_definition
| CHECK (expr
)column_definition
:data_type
[NOT NULL | NULL] [DEFAULTdefault_value
] [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY] [COMMENT 'string
'] [reference_definition
] [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}] [STORAGE {DISK|MEMORY}]data_type
: BIT[(length
)] | TINYINT[(length
)] [UNSIGNED] [ZEROFILL] | SMALLINT[(length
)] [UNSIGNED] [ZEROFILL] | MEDIUMINT[(length
)] [UNSIGNED] [ZEROFILL] | INT[(length
)] [UNSIGNED] [ZEROFILL] | INTEGER[(length
)] [UNSIGNED] [ZEROFILL] | BIGINT[(length
)] [UNSIGNED] [ZEROFILL] | REAL[(length
,decimals
)] [UNSIGNED] [ZEROFILL] | DOUBLE[(length
,decimals
)] [UNSIGNED] [ZEROFILL] | FLOAT[(length
,decimals
)] [UNSIGNED] [ZEROFILL] | DECIMAL[(length
[,decimals
])] [UNSIGNED] [ZEROFILL] | NUMERIC[(length
[,decimals
])] [UNSIGNED] [ZEROFILL] | DATE | TIME | TIMESTAMP | DATETIME | YEAR | CHAR[(length
)] [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | VARCHAR(length
) [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | BINARY[(length
)] | VARBINARY(length
) | TINYBLOB | BLOB | MEDIUMBLOB | LONGBLOB | TINYTEXT [BINARY] [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | TEXT [BINARY] [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | MEDIUMTEXT [BINARY] [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | LONGTEXT [BINARY] [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | ENUM(value1
,value2
,value3
,...) [CHARACTER SETcharset_name
] [COLLATEcollation_name
] | SET(value1
,value2
,value3
,...) [CHARACTER SETcharset_name
] [COLLATEcollation_name
] |spatial_type
index_col_name
:col_name
[(length
)] [ASC | DESC]index_type
: USING {BTREE | HASH | RTREE}index_option
: KEY_BLOCK_SIZE [=]value
|index_type
| WITH PARSERparser_name
reference_definition
: REFERENCEStbl_name
[(index_col_name
,...)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETEreference_option
] [ON UPDATEreference_option
]reference_option
: RESTRICT | CASCADE | SET NULL | NO ACTIONtable_option
: TABLESPACEtablespace_name
STORAGE DISK ENGINE [=]engine_name
| AUTO_INCREMENT [=]value
| AVG_ROW_LENGTH [=]value
| [DEFAULT] CHARACTER SET [=]charset_name
| CHECKSUM [=] {0 | 1} | [DEFAULT] COLLATE [=]collation_name
| COMMENT [=] 'string
' | CONNECTION [=] 'connect_string
' | DATA DIRECTORY [=] 'absolute path to directory
' | DELAY_KEY_WRITE [=] {0 | 1} | INDEX DIRECTORY [=] 'absolute path to directory
' | INSERT_METHOD [=] { NO | FIRST | LAST } | KEY_BLOCK_SIZE [=]value
| MAX_ROWS [=]value
| MIN_ROWS [=]value
| PACK_KEYS [=] {0 | 1 | DEFAULT} | PASSWORD [=] 'string
' | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT} | UNION [=] (tbl_name
[,tbl_name
]...)partition_options
: PARTITION BY { [LINEAR] HASH(expr
) | [LINEAR] KEY(column_list
) | RANGE(expr
) | LIST(expr
) } [PARTITIONSnum
] [SUBPARTITION BY { [LINEAR] HASH(expr
) | [LINEAR] KEY(column_list
) } [SUBPARTITIONSnum
] ] [(partition_definition
[,partition_definition
] ...)]partition_definition
: PARTITIONpartition_name
[VALUES {LESS THAN {(expr
) |MAXVALUE
} | IN (value_list
)}] [[STORAGE] ENGINE [=]engine_name
] [COMMENT [=]'comment_text'
] [DATA DIRECTORY [=] ''] [INDEX DIRECTORY [=] '
data_dir
'] [MAX_ROWS [=]
index_dir
max_number_of_rows
] [MIN_ROWS [=]min_number_of_rows
] [TABLESPACE [=]tablespace_name
] [NODEGROUP [=]node_group_id
] [(subpartition_definition
[,subpartition_definition
] ...)]subpartition_definition
: SUBPARTITIONlogical_name
[[STORAGE] ENGINE [=]engine_name
] [COMMENT [=]'comment_text'
] [DATA DIRECTORY [=] ''] [INDEX DIRECTORY [=] '
data_dir
'] [MAX_ROWS [=]
index_dir
max_number_of_rows
] [MIN_ROWS [=]min_number_of_rows
] [TABLESPACE [=]tablespace_name
] [NODEGROUP [=]node_group_id
]select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement
)
CREATE TABLE
creates a table with the given
name. You must have the CREATE
privilege for
the table.
Rules for allowable table names are given in Section 8.2, “Schema Object Names”. By default, the table is created in the default database. An error occurs if the table exists, if there is no default database, or if the database does not exist.
The table name can be specified as
db_name.tbl_name
to create the table
in a specific database. This works regardless of whether there
is a default database, assuming that the database exists. If you
use quoted identifiers, quote the database and table names
separately. For example, write
`mydb`.`mytbl`
, not
`mydb.mytbl`
.
You can use the TEMPORARY
keyword when
creating a table. A TEMPORARY
table is
visible only to the current connection, and is dropped
automatically when the connection is closed. This means that two
different connections can use the same temporary table name
without conflicting with each other or with an existing
non-TEMPORARY
table of the same name. (The
existing table is hidden until the temporary table is dropped.)
To create temporary tables, you must have the CREATE
TEMPORARY TABLES
privilege.
CREATE TABLE
does not automatically commit
the current active transaction if you use the
TEMPORARY
keyword.
The keywords IF NOT EXISTS
prevent an error
from occurring if the table exists. However, there is no
verification that the existing table has a structure identical
to that indicated by the CREATE TABLE
statement.
If you use IF NOT EXISTS
in a
CREATE TABLE ... SELECT
statement, any rows
selected by the SELECT
part are inserted
regardless of whether the table already exists.
MySQL represents each table by an .frm
table format (definition) file in the database directory. The
storage engine for the table might create other files as well.
In the case of MyISAM
tables, the storage
engine creates data and index files. Thus, for each
MyISAM
table
tbl_name
, there are three disk files:
File | Purpose |
| Table format (definition) file |
| Data file |
| Index file |
Chapter 13, Storage Engines, describes what files each storage engine creates to represent tables. If a table name contains special characters, the names for the table files contain encoded versions of those characters as described in Section 8.2.3, “Mapping of Identifiers to Filenames”.
data_type
represents the data type in
a column definition. spatial_type
represents a spatial data type. The data type syntax shown is
representative only. For a full description of the syntax
available for specifying column data types, as well as
information about the properties of each type, see
Chapter 10, Data Types, and
Chapter 22, Spatial Extensions.
Some attributes do not apply to all data types.
AUTO_INCREMENT
applies only to integer and
floating-point types. DEFAULT
does not apply
to the BLOB
or TEXT
types.
If neither NULL
nor NOT
NULL
is specified, the column is treated as though
NULL
had been specified.
An integer or floating-point column can have the additional
attribute AUTO_INCREMENT
. When you insert
a value of NULL
(recommended) or
0
into an indexed
AUTO_INCREMENT
column, the column is set
to the next sequence value. Typically this is
, where
value
+1value
is the largest value for
the column currently in the table.
AUTO_INCREMENT
sequences begin with
1
.
To retrieve an AUTO_INCREMENT
value after
inserting a row, use the
LAST_INSERT_ID()
SQL
function or the
mysql_insert_id()
C API
function. See Section 11.11.3, “Information Functions”, and
Section 29.2.3.37, “mysql_insert_id()
”.
If the NO_AUTO_VALUE_ON_ZERO
SQL mode is
enabled, you can store 0
in
AUTO_INCREMENT
columns as
0
without generating a new sequence
value. See Section 5.1.7, “SQL Modes”.
There can be only one AUTO_INCREMENT
column per table, it must be indexed, and it cannot have a
DEFAULT
value. An
AUTO_INCREMENT
column works properly
only if it contains only positive values. Inserting a
negative number is regarded as inserting a very large
positive number. This is done to avoid precision problems
when numbers “wrap” over from positive to
negative and also to ensure that you do not accidentally
get an AUTO_INCREMENT
column that
contains 0
.
For MyISAM
tables, you can specify an
AUTO_INCREMENT
secondary column in a
multiple-column key. See
Section 3.6.9, “Using AUTO_INCREMENT
”.
To make MySQL compatible with some ODBC applications, you
can find the AUTO_INCREMENT
value for the
last inserted row with the following query:
SELECT * FROMtbl_name
WHEREauto_col
IS NULL
For information about InnoDB
and
AUTO_INCREMENT
, see
Section 13.5.6.3, “How AUTO_INCREMENT
Handling Works in
InnoDB
”.
Character data types (CHAR
,
VARCHAR
, TEXT
) can
include CHARACTER SET
and
COLLATE
attributes to specify the
character set and collation for the column. For details, see
Section 9.1, “Character Set Support”. CHARSET
is a
synonym for CHARACTER SET
. Example:
CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
MySQL 5.1 interprets length specifications in
character column definitions in characters. (Versions before
MySQL 4.1 interpreted them in bytes.) Lengths for
BINARY
and VARBINARY
are in bytes.
The DEFAULT
clause specifies a default
value for a column. With one exception, the default value
must be a constant; it cannot be a function or an
expression. This means, for example, that you cannot set the
default for a date column to be the value of a function such
as NOW()
or
CURRENT_DATE
. The exception
is that you can specify
CURRENT_TIMESTAMP
as the
default for a TIMESTAMP
column. See
Section 10.3.1.1, “TIMESTAMP
Properties”.
If a column definition includes no explicit
DEFAULT
value, MySQL determines the
default value as described in
Section 10.1.4, “Data Type Default Values”.
BLOB
and TEXT
columns
cannot be assigned a default value.
CREATE TABLE
fails if a date-valued
default is not correct according to the
NO_ZERO_IN_DATE
SQL mode, even if strict
SQL mode is not enabled. For example, c1 DATE
DEFAULT '2010-00-00'
causes CREATE
TABLE
to fail with Invalid default value
for 'c1'
.
A comment for a column can be specified with the
COMMENT
option, up to 255 characters
long. The comment is displayed by the SHOW CREATE
TABLE
and SHOW FULL COLUMNS
statements.
Beginning with MySQL Cluster NDB 6.2.5 and MySQL Cluster NDB
6.3.2, it is also possible to specify a data storage format
for individual columns of NDB
tables
using COLUMN_FORMAT
. Allowable column
formats are FIXED
,
DYNAMIC
, and DEFAULT
.
FIXED
is used to specify fixed-width
storage, DYNAMIC
allows the column to be
variable-width, and DEFAULT
causes the
column to use fixed-width or variable-width storage as
determined by the column's data type (possibly overridden by
a ROW_FORMAT
specifier).
For NDB
tables, the default value for
COLUMN_FORMAT
is
DEFAULT
.
COLUMN_FORMAT
currently has no effect on
columns of tables using storage engines other than
NDB
.
For NDB
tables, beginning with MySQL
Cluster NDB 6.2.5 and MySQL Cluster NDB 6.3.2, it is also
possible to specify whether the column is stored on disk or
in memory by using a STORAGE
clause.
STORAGE DISK
causes the column to be
stored on disk, and STORAGE MEMORY
causes
in-memory storage to be used.
For NDB
tables, the default is
MEMORY
.
The STORAGE
clause has no effect on
tables using storage engines other than
NDB
.
KEY
is normally a synonym for
INDEX
. The key attribute PRIMARY
KEY
can also be specified as just
KEY
when given in a column definition.
This was implemented for compatibility with other database
systems.
A UNIQUE
index creates a constraint such
that all values in the index must be distinct. An error
occurs if you try to add a new row with a key value that
matches an existing row. For all engines, a
UNIQUE
index allows multiple
NULL
values for columns that can contain
NULL
.
A PRIMARY KEY
is a unique index where all
key columns must be defined as NOT NULL
.
If they are not explicitly declared as NOT
NULL
, MySQL declares them so implicitly (and
silently). A table can have only one PRIMARY
KEY
. If you do not have a PRIMARY
KEY
and an application asks for the
PRIMARY KEY
in your tables, MySQL returns
the first UNIQUE
index that has no
NULL
columns as the PRIMARY
KEY
.
In InnoDB
tables, having a long
PRIMARY KEY
wastes a lot of space. (See
Section 13.5.13, “InnoDB
Table and Index Structures”.)
In the created table, a PRIMARY KEY
is
placed first, followed by all UNIQUE
indexes, and then the non-unique indexes. This helps the
MySQL optimizer to prioritize which index to use and also
more quickly to detect duplicated UNIQUE
keys.
A PRIMARY KEY
can be a multiple-column
index. However, you cannot create a multiple-column index
using the PRIMARY KEY
key attribute in a
column specification. Doing so only marks that single column
as primary. You must use a separate PRIMARY
KEY(
clause.
index_col_name
,
...)
If a PRIMARY KEY
or
UNIQUE
index consists of only one column
that has an integer type, you can also refer to the column
as _rowid
in SELECT
statements.
In MySQL, the name of a PRIMARY KEY
is
PRIMARY
. For other indexes, if you do not
assign a name, the index is assigned the same name as the
first indexed column, with an optional suffix
(_2
, _3
,
...
) to make it unique. You can see index
names for a table using SHOW INDEX FROM
. See
Section 12.5.4.18, “tbl_name
SHOW INDEX
Syntax”.
Some storage engines allow you to specify an index type when
creating an index. The syntax for the
index_type
specifier is
USING
.
type_name
Example:
CREATE TABLE lookup (id INT, INDEX USING BTREE (id)) ENGINE = MEMORY;
Before MySQL 5.1.10, USING
can be given
only before the index column list. As of 5.1.10, the
preferred position is after the column list. Use of the
option before the column list will no longer be recognized
as of MySQL 5.3.
index_option
values specify
additional options for an index. USING
is
one such option. For details about allowable
index_option
values, see
Section 12.1.7, “CREATE INDEX
Syntax”.
For more information about indexes, see Section 7.4.5, “How MySQL Uses Indexes”.
In MySQL 5.1, only the
MyISAM
, InnoDB
, and
MEMORY
storage engines support indexes on
columns that can have NULL
values. In
other cases, you must declare indexed columns as
NOT NULL
or an error results.
For CHAR
, VARCHAR
,
BINARY
, and VARBINARY
columns, indexes can be created that use only the leading
part of column values, using
syntax to specify an index prefix length.
col_name
(length
)BLOB
and TEXT
columns
also can be indexed, but a prefix length
must be given. Prefix lengths are given
in characters for non-binary string types and in bytes for
binary string types. That is, index entries consist of the
first length
characters of each
column value for CHAR
,
VARCHAR
, and TEXT
columns, and the first length
bytes of each column value for BINARY
,
VARBINARY
, and BLOB
columns. Indexing only a prefix of column values like this
can make the index file much smaller. See
Section 7.4.3, “Column Indexes”.
Only the MyISAM
and
InnoDB
storage engines support indexing
on BLOB
and TEXT
columns. For example:
CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));
Prefixes can be up to 1000 bytes long (767 bytes for
InnoDB
tables). Note that prefix limits
are measured in bytes, whereas the prefix length in
CREATE TABLE
statements is interpreted as
number of characters for non-binary data types
(CHAR
, VARCHAR
,
TEXT
). Take this into account when
specifying a prefix length for a column that uses a
multi-byte character set.
An index_col_name
specification
can end with ASC
or
DESC
. These keywords are allowed for
future extensions for specifying ascending or descending
index value storage. Currently, they are parsed but ignored;
index values are always stored in ascending order.
When you use ORDER BY
or GROUP
BY
on a TEXT
or
BLOB
column in a
SELECT
, the server sorts values using
only the initial number of bytes indicated by the
max_sort_length
system variable. See
Section 10.4.3, “The BLOB
and TEXT
Types”.
You can create special FULLTEXT
indexes,
which are used for full-text searches. Only the
MyISAM
storage engine supports
FULLTEXT
indexes. They can be created
only from CHAR
,
VARCHAR
, and TEXT
columns. Indexing always happens over the entire column;
column prefix indexing is not supported and any prefix
length is ignored if specified. See
Section 11.8, “Full-Text Search Functions”, for details of operation.
A WITH PARSER
clause can be specified as
an index_option
value to
associate a parser plugin with the index if full-text
indexing and searching operations need special handling.
This clause is legal only for FULLTEXT
indexes. See Section 31.2, “The MySQL Plugin Interface”, for details on
creating plugins.
You can create SPATIAL
indexes on spatial
data types. Spatial types are supported only for
MyISAM
tables and indexed columns must be
declared as NOT NULL
. See
Chapter 22, Spatial Extensions.
InnoDB
tables support checking of foreign
key constraints. See Section 13.5, “The InnoDB
Storage Engine”. Note that the
FOREIGN KEY
syntax in
InnoDB
is more restrictive than the
syntax presented for the CREATE TABLE
statement at the beginning of this section: The columns of
the referenced table must always be explicitly named.
InnoDB
supports both ON
DELETE
and ON UPDATE
actions on
foreign keys. For the precise syntax, see
Section 13.5.6.4, “FOREIGN KEY
Constraints”.
For other storage engines, MySQL Server parses and ignores
the FOREIGN KEY
and
REFERENCES
syntax in CREATE
TABLE
statements. The CHECK
clause is parsed but ignored by all storage engines. See
Section 1.8.5.4, “Foreign Keys”.
The inline REFERENCES
specifications
where the references are defined as part of the column
specification are silently ignored by
InnoDB
. InnoDB only accepts
REFERENCES
clauses when specified as
part of a separate FOREIGN KEY
specification.
Partitioned tables do not support foreign keys. See Section 21.5, “Restrictions and Limitations on Partitioning”, for more information.
There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table and depends on the factors discussed in Section D.7.2, “The Maximum Number of Columns Per Table”.
The TABLESPACE ... STORAGE DISK
table option
is used only with NDBCLUSTER
tables. It
assigns the table to a Cluster Disk Data tablespace. The
tablespace named tablespace_name
must
already have been created using CREATE
TABLESPACE
. This table option was introduced in MySQL
5.1.6. See Section 20.12, “MySQL Cluster Disk Data Tables”.
The ENGINE
table option specifies the storage
engine for the table.
The ENGINE
table option takes the storage
engine names shown in the following table.
Storage Engine | Description |
ARCHIVE | The archiving storage engine. See
Section 13.10, “The ARCHIVE Storage Engine”. |
CSV | Tables that store rows in comma-separated values format. See
Section 13.11, “The CSV Storage Engine”. |
EXAMPLE | An example engine. See Section 13.8, “The EXAMPLE Storage Engine”. |
FEDERATED | Storage engine that accesses remote tables. See
Section 13.9, “The FEDERATED Storage Engine”. |
HEAP | This is a synonym for MEMORY . |
ISAM (OBSOLETE) | Not available in MySQL 5.1. If you are upgrading to MySQL
5.1 from a previous version, you should
convert any existing ISAM tables to
MyISAM before
performing the upgrade. |
InnoDB | Transaction-safe tables with row locking and foreign keys. See
Section 13.5, “The InnoDB Storage Engine”. |
MEMORY | The data for this storage engine is stored only in memory. See
Section 13.7, “The MEMORY (HEAP ) Storage Engine”. |
MERGE | A collection of MyISAM tables used as one table. Also
known as MRG_MyISAM . See
Section 13.6, “The MERGE Storage Engine”. |
MyISAM | The binary portable storage engine that is the default storage engine
used by MySQL. See
Section 13.4, “The MyISAM Storage Engine”. |
NDBCLUSTER | Clustered, fault-tolerant, memory-based tables. Also known as
NDB . See
Chapter 20, MySQL Cluster. |
If a storage engine is specified that is not available, MySQL
uses the default engine instead. Normally, this is
MyISAM
. For example, if a table definition
includes the ENGINE=INNODB
option but the
MySQL server does not support INNODB
tables,
the table is created as a MyISAM
table. This
makes it possible to have a replication setup where you have
transactional tables on the master but tables created on the
slave are non-transactional (to get more speed). In MySQL
5.1, a warning occurs if the storage engine
specification is not honored.
Engine substitution can be controlled by the setting of the
NO_ENGINE_SUBSTITUTION
SQL mode, as described
in Section 5.1.7, “SQL Modes”.
The older TYPE
option was synonymous with
ENGINE
. TYPE
has been
deprecated since MySQL 4.0 but is still supported for backward
compatibility in MySQL 5.1 (excepting MySQL 5.1.7). Since
MySQL 5.1.8, it produces a warning. It is removed as of MySQL
5.2. You should not use TYPE
in
any new applications, and you should immediately begin
conversion of existing applications to use
ENGINE
instead. (See
Section C.1.21, “Changes in MySQL 5.1.8 (Not released)”.)
The other table options are used to optimize the behavior of the
table. In most cases, you do not have to specify any of them.
These options apply to all storage engines unless otherwise
indicated. Options that do not apply to a given storage engine
may be accepted and remembered as part of the table definition.
Such options then apply if you later use ALTER
TABLE
to convert the table to use a different storage
engine.
AUTO_INCREMENT
The initial AUTO_INCREMENT
value for the
table. In MySQL 5.1, this works for
MyISAM
, MEMORY
, and
InnoDB
tables. It also works for
ARCHIVE
tables as of MySQL 5.1.6. To set
the first auto-increment value for engines that do not
support the AUTO_INCREMENT
table option,
insert a “dummy” row with a value one less than
the desired value after creating the table, and then delete
the dummy row.
For engines that support the
AUTO_INCREMENT
table option in
CREATE TABLE
statements, you can also use
ALTER TABLE
to
reset the tbl_name
AUTO_INCREMENT = N
AUTO_INCREMENT
value. The value
cannot be set lower than the maximum value currently in the
column.
AVG_ROW_LENGTH
An approximation of the average row length for your table. You need to set this only for large tables with variable-size rows.
When you create a MyISAM
table, MySQL
uses the product of the MAX_ROWS
and
AVG_ROW_LENGTH
options to decide how big
the resulting table is. If you don't specify either option,
the maximum size for MyISAM
data and
index files is 256TB by default. (If your operating system
does not support files that large, table sizes are
constrained by the file size limit.) If you want to keep
down the pointer sizes to make the index smaller and faster
and you don't really need big files, you can decrease the
default pointer size by setting the
myisam_data_pointer_size
system variable.
(See Section 5.1.3, “System Variables”.) If you want
all your tables to be able to grow above the default limit
and are willing to have your tables slightly slower and
larger than necessary, you can increase the default pointer
size by setting this variable. Setting the value to 7 allows
table sizes up to 65,536TB.
[DEFAULT] CHARACTER SET
Specify a default character set for the table.
CHARSET
is a synonym for
CHARACTER SET
. If the character set name
is DEFAULT
, the database character set is
used.
CHECKSUM
Set this to 1 if you want MySQL to maintain a live checksum
for all rows (that is, a checksum that MySQL updates
automatically as the table changes). This makes the table a
little slower to update, but also makes it easier to find
corrupted tables. The CHECKSUM TABLE
statement reports the checksum. (MyISAM
only.)
[DEFAULT] COLLATE
Specify a default collation for the table.
COMMENT
A comment for the table, up to 60 characters long.
CONNECTION
The connection string for a FEDERATED
table.
Older versions of MySQL used a COMMENT
option for the connection string.
DATA DIRECTORY
, INDEX
DIRECTORY
By using DATA
DIRECTORY='
or directory
'INDEX
DIRECTORY='
you can specify where the directory
'MyISAM
storage
engine should put a table's data file and index file. The
directory must be the full pathname to the directory, not a
relative path.
Beginning with MySQL 5.1.23, table-level DATA
DIRECTORY
and INDEX DIRECTORY
options are ignored for partitioned tables. (Bug#32091)
These options work only when you are not using the
--skip-symbolic-links
option. Your
operating system must also have a working, thread-safe
realpath()
call. See
Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”, for more
complete information.
If a MyISAM
table is created with no
DATA DIRECTORY
option, the
.MYD
file is created in the database
directory. By default, if MyISAM
finds an
existing .MYD
file in this case, it
overwrites it. The same applies to .MYI
files for tables created with no INDEX
DIRECTORY
option. As of MySQL 5.1.23, to suppress
this behavior, start the server with the
--keep_files_on_create
option, in which
case MyISAM
will not overwrite existing
files and returns an error instead.
If a MyISAM
table is created with a
DATA DIRECTORY
or INDEX
DIRECTORY
option and an existing
.MYD
or .MYI
file
is found, MyISAM always returns an error. It will not
overwrite a file in the specified directory.
Beginning with MySQL 5.1.24, you cannot use pathnames that
contain the MySQL data directory with DATA
DIRECTORY
or INDEX DIRECTORY
.
This includes partitioned tables and individual table
partitions. (See Bug#32167.)
DELAY_KEY_WRITE
Set this to 1 if you want to delay key updates for the table
until the table is closed. See the description of the
delay_key_write
system variable in
Section 5.1.3, “System Variables”.
(MyISAM
only.)
INSERT_METHOD
If you want to insert data into a MERGE
table, you must specify with
INSERT_METHOD
the table into which the
row should be inserted. INSERT_METHOD
is
an option useful for MERGE
tables only.
Use a value of FIRST
or
LAST
to have inserts go to the first or
last table, or a value of NO
to prevent
inserts. See Section 13.6, “The MERGE
Storage Engine”.
KEY_BLOCK_SIZE
This option provides a hint to the storage engine about the
size in bytes to use for index key blocks. The engine is
allowed to change the value if necessary. A value of 0
indicates that the default value should be used. Individual
index definitions can specify a
KEY_BLOCK_SIZE
value of their own to
override the table value. KEY_BLOCK_SIZE
was added in MySQL 5.1.10.
MAX_ROWS
The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to the storage engine that the table must be able to store at least this many rows.
MIN_ROWS
The minimum number of rows you plan to store in the table.
PACK_KEYS
PACK_KEYS
takes effect only with
MyISAM
tables. Set this option to 1 if
you want to have smaller indexes. This usually makes updates
slower and reads faster. Setting the option to 0 disables
all packing of keys. Setting it to
DEFAULT
tells the storage engine to pack
only long CHAR
,
VARCHAR
, BINARY
, or
VARBINARY
columns.
If you do not use PACK_KEYS
, the default
is to pack strings, but not numbers. If you use
PACK_KEYS=1
, numbers are packed as well.
When packing binary number keys, MySQL uses prefix compression:
Every key needs one extra byte to indicate how many bytes of the previous key are the same for the next key.
The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.
This means that if you have many equal keys on two
consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the
row). Compare this to the ordinary case where the following
keys takes storage_size_for_key +
pointer_size
(where the pointer size is usually
4). Conversely, you get a significant benefit from prefix
compression only if you have many numbers that are the same.
If all keys are totally different, you use one byte more per
key, if the key is not a key that can have
NULL
values. (In this case, the packed
key length is stored in the same byte that is used to mark
if a key is NULL
.)
PASSWORD
This option is unused. If you have a need to scramble your
.frm
files and make them unusable to
any other MySQL server, please contact our sales department.
RAID_TYPE
RAID
support has been removed as of MySQL
5.0. For information on RAID
, see
http://dev.mysql.com/doc/refman/4.1/en/create-table.html.
ROW_FORMAT
Defines how the rows should be stored. For
MyISAM
tables, the option value can be
FIXED
or DYNAMIC
for
static or variable-length row format.
myisampack sets the type to
COMPRESSED
. See
Section 13.4.3, “MyISAM
Table Storage Formats”.
For InnoDB
tables, rows are stored in
compact format (ROW_FORMAT=COMPACT
) by
default. The non-compact format used in older versions of
MySQL can still be requested by specifying
ROW_FORMAT=REDUNDANT
.
During CREATE TABLE
, if you specify a
row format that the engine does support, the table will be
created using the storage engines default row format. The
information reported in this column in response to
SHOW TABLE STATUS
is the actual row
format used. This may differ from the value in the
Create_options
column because the
original CREATE TABLE
definition is
retained during creation.
UNION
UNION
is used when you want to access a
collection of identical MyISAM
tables as
one. This works only with MERGE
tables.
See Section 13.6, “The MERGE
Storage Engine”.
You must have SELECT
,
UPDATE
, and DELETE
privileges for the tables you map to a
MERGE
table.
Formerly, all tables used had to be in the same database
as the MERGE
table itself. This
restriction no longer applies.
partition_options
can be used to
control partitioning of the table created with CREATE
TABLE
.
Not all options shown in the syntax for
partition_options
at the beginning
of this section are available for all partitioning types.
Please see the listings for the following individual types for
information specific to each type, and see
Chapter 21, Partitioning, for more complete information
about the workings of and uses for partitioning in MySQL, as
well as additional examples of table creation and other
statements relating to MySQL partitioning.
If used, a partition_options
clause
begins with PARTITION BY
. This clause
contains the function that is used to determine the partition;
the function returns an integer value ranging from 1 to
num
, where
num
is the number of partitions. (The
maximum number of user-defined partitions which a table may
contain is 1024; the number of subpartitions — discussed
later in this section — is included in this maximum.) The
choices that are available for this function in MySQL
5.1 are shown in the following list:
HASH(
:
Hashes one or more columns to create a key for placing and
locating rows. expr
)expr
is an
expression using one or more table columns. This can be any
legal MySQL expression (including MySQL functions) that
yields a single integer value. For example, these are all
valid CREATE TABLE
statements using
PARTITION BY HASH
:
CREATE TABLE t1 (col1 INT, col2 CHAR(5)) PARTITION BY HASH(col1); CREATE TABLE t1 (col1 INT, col2 CHAR(5)) PARTITION BY HASH( ORD(col2) ); CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME) PARTITION BY HASH ( YEAR(col3) );
You may not use either VALUES LESS THAN
or VALUES IN
clauses with
PARTITION BY HASH
.
PARTITION BY HASH
uses the remainder of
expr
divided by the number of
partitions (that is, the modulus). For examples and
additional information, see
Section 21.2.3, “HASH
Partitioning”.
The LINEAR
keyword entails a somewhat
different algorithm. In this case, the number of the
partition in which a row is stored is calculated as the
result of one or more logical
AND
operations. For
discussion and examples of linear hashing, see
Section 21.2.3.1, “LINEAR HASH
Partitioning”.
KEY(
:
This is similar to column_list
)HASH
, except that
MySQL supplies the hashing function so as to guarantee an
even data distribution. The
column_list
argument is simply a
list of table columns. This example shows a simple table
partitioned by key, with 4 partitions:
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE) PARTITION BY KEY(col3) PARTITIONS 4;
For tables that are partitioned by key, you can employ
linear partitioning by using the LINEAR
keyword. This has the same effect as with tables that are
partitioned by HASH
. That is, the
partition number is found using the
&
operator rather than the modulus (see
Section 21.2.3.1, “LINEAR HASH
Partitioning”, and
Section 21.2.4, “KEY
Partitioning”, for details). This
example uses linear partitioning by key to distribute data
between 5 partitions:
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE) PARTITION BY LINEAR KEY(col3) PARTITIONS 5;
You may not use either VALUES LESS THAN
or VALUES IN
clauses with
PARTITION BY KEY
.
RANGE
: In this case,
expr
shows a range of values
using a set of VALUES LESS THAN
operators. When using range partitioning, you must define at
least one partition using VALUES LESS
THAN
. You cannot use VALUES IN
with range partitioning.
VALUES LESS THAN
can be used with either
a literal value or an expression that evaluates to a single
value.
Suppose that you have a table that you wish to partition on a column containing year values, according to the following scheme:
Partition Number: | Years Range: |
0 | 1990 and earlier |
1 | 1991 – 1994 |
2 | 1995 – 1998 |
3 | 1999 – 2002 |
4 | 2003 – 2005 |
5 | 2006 and later |
A table implementing such a partitioning scheme can be
realized by the CREATE TABLE
statement
shown here:
CREATE TABLE t1 ( year_col INT, some_data INT ) PARTITION BY RANGE (year_col) ( PARTITION p0 VALUES LESS THAN (1991), PARTITION p1 VALUES LESS THAN (1995), PARTITION p2 VALUES LESS THAN (1999), PARTITION p3 VALUES LESS THAN (2002), PARTITION p4 VALUES LESS THAN (2006), PARTITION p5 VALUES LESS THAN MAXVALUE );
PARTITION ... VALUES LESS THAN ...
statements work in a consecutive fashion. VALUES
LESS THAN MAXVALUE
works to specify
“leftover” values that are greater than the
maximum value otherwise specified.
Note that VALUES LESS THAN
clauses work
sequentially in a manner similar to that of the
case
portions of a switch ...
case
block (as found in many programming languages
such as C, Java, and PHP). That is, the clauses must be
arranged in such a way that the upper limit specified in
each successive VALUES LESS THAN
is
greater than that of the previous one, with the one
referencing MAXVALUE
coming last of all
in the list.
LIST(
:
This is useful when assigning partitions based on a table
column with a restricted set of possible values, such as a
state or country code. In such a case, all rows pertaining
to a certain state or country can be assigned to a single
partition, or a partition can be reserved for a certain set
of states or countries. It is similar to
expr
)RANGE
, except that only VALUES
IN
may be used to specify allowable values for
each partition.
VALUES IN
is used with a list of values
to be matched. For instance, you could create a partitioning
scheme such as the following:
CREATE TABLE client_firms ( id INT, name VARCHAR(35) ) PARTITION BY LIST (id) ( PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21), PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22), PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23), PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24) );
When using list partitioning, you must define at least one
partition using VALUES IN
. You cannot use
VALUES LESS THAN
with PARTITION
BY LIST
.
Currently, the value list used with VALUES
IN
must consist of integer values only.
The number of partitions may optionally be specified with a
PARTITIONS
clause, where num
num
is the number
of partitions. If both this clause and
any PARTITION
clauses are used,
num
must be equal to the total
number of any partitions that are declared using
PARTITION
clauses.
Whether or not you use a PARTITIONS
clause in creating a table that is partitioned by
RANGE
or LIST
, you
must still include at least one PARTITION
VALUES
clause in the table definition (see
below).
A partition may optionally be divided into a number of
subpartitions. This can be indicated by using the optional
SUBPARTITION BY
clause. Subpartitioning
may be done by HASH
or
KEY
. Either of these may be
LINEAR
. These work in the same way as
previously described for the equivalent partitioning types.
(It is not possible to subpartition by
LIST
or RANGE
.)
The number of subpartitions can be indicated using the
SUBPARTITIONS
keyword followed by an
integer value.
MySQL 5.1.12 introduces rigorous checking of the value used
in a PARTITIONS
or
SUBPARTITIONS
clause. Beginning with this
version, this value must adhere to the following rules:
The value must be a positive, non-zero integer.
No leading zeroes are permitted.
The value must be an integer literal, and cannot not be
an expression. For example, PARTITIONS
0.2E+01
is not allowed, even though
0.2E+01
evaluates to
2
. (Bug#15890)
The expression (expr
) used in a
PARTITION BY
clause cannot refer to any
columns not in the table being created; beginning with MySQL
5.1.23, such references are specifically disallowed and cause
the statement to fail with an error. (Bug#29444)
Each partition may be individually defined using a
partition_definition
clause. The
individual parts making up this clause are as follows:
PARTITION
: This
specifies a logical name for the partition.
partition_name
A VALUES
clause: For range partitioning,
each partition must include a VALUES LESS
THAN
clause; for list partitioning, you must
specify a VALUES IN
clause for each
partition. This is used to determine which rows are to be
stored in this partition. See the discussions of
partitioning types in Chapter 21, Partitioning, for
syntax examples.
An optional COMMENT
clause may be used to
specify a string that describes the partition. Example:
COMMENT = 'Data for the years previous to 1999'
DATA DIRECTORY
and INDEX
DIRECTORY
may be used to indicate the directory
where, respectively, the data and indexes for this partition
are to be stored. Both the
and
the
data_dir
must be absolute system pathnames. Example:
index_dir
CREATE TABLE th (id INT, name VARCHAR(30), adate DATE) PARTITION BY LIST(YEAR(adate)) ( PARTITION p1999 VALUES IN (1995, 1999, 2003) DATA DIRECTORY = '/var/appdata/95/data
' INDEX DIRECTORY = '/var/appdata/95/idx
', PARTITION p2000 VALUES IN (1996, 2000, 2004) DATA DIRECTORY = '/var/appdata/96/data
' INDEX DIRECTORY = '/var/appdata/96/idx
', PARTITION p2001 VALUES IN (1997, 2001, 2005) DATA DIRECTORY = '/var/appdata/97/data
' INDEX DIRECTORY = '/var/appdata/97/idx
', PARTITION p2000 VALUES IN (1998, 2002, 2006) DATA DIRECTORY = '/var/appdata/98/data
' INDEX DIRECTORY = '/var/appdata/98/idx
' );
DATA DIRECTORY
and INDEX
DIRECTORY
behave in the same way as in the
CREATE TABLE
statement's
table_option
clause as used for
MyISAM
tables.
One data directory and one index directory may be specified per partition. If left unspecified, the data and indexes are stored by default in the table's database directory.
On Windows, the DATA DIRECTORY
and
INDEX DIRECTORY
options are not supported
for individual partitions or subpartitions. Beginning with
MySQL 5.1.24, these options are ignored on Windows, except
that a warning is generated. (Bug#30459)
Prior to MySQL 5.1.18, DATA DIRECTORY
and INDEX DIRECTORY
were allowed even
if the NO_DIR_IN_CREATE
server SQL mode
was in effect at the time that a partitioned table was
created. Beginning with MySQL 5.1.18, these options are
ignored for creating partitioned tables if
NO_DIR_IN_CREATE
is in effect. (Bug#24633)
MAX_ROWS
and MIN_ROWS
may be used to specify, respectively, the maximum and
minimum number of rows to be stored in the partition. The
values for max_number_of_rows
and
min_number_of_rows
must be
positive integers. As with the table-level options with the
same names, these act only as “suggestions” to
the server and are not hard limits.
The optional TABLESPACE
clause may be
used to designate a tablespace for the partition. Used for
MySQL Cluster only.
The partitioning handler accepts a [STORAGE]
ENGINE
option for both
PARTITION
and
SUBPARTITION
. Currently, the only way in
which this can be used is to set all partitions or all
subpartitions to the same storage engine, and an attempt to
set different storage engines for partitions or
subpartitions in the same table will give rise to the error
ERROR 1469 (HY000): The mix of handlers in the
partitions is not allowed in this version of
MySQL. We expect to lift this restriction on
partitioning in a future MySQL release.
The NODEGROUP
option can be used to make
this partition act as part of the node group identified by
node_group_id
. This option is
applicable only to MySQL Cluster.
The partition definition may optionally contain one or more
subpartition_definition
clauses.
Each of these consists at a minimum of the
SUBPARTITION
, where
name
name
is an identifier for the
subpartition. Except for the replacement of the
PARTITION
keyword with
SUBPARTITION
, the syntax for a
subpartition definition is identical to that for a partition
definition.
Subpartitioning must be done by HASH
or
KEY
, and can be done only on
RANGE
or LIST
partitions. See
Section 21.2.5, “Subpartitioning”.
Partitions can be modified, merged, added to tables, and dropped
from tables. For basic information about the MySQL statements to
accomplish these tasks, see Section 12.1.4, “ALTER TABLE
Syntax”. For
more detailed descriptions and examples, see
Section 21.3, “Partition Management”.
The original CREATE TABLE
statement,
including all specifications and table options are stored by
MySQL when the table is created. The information is retained
so that if you change storage engines, collations or other
settings using an ALTER TABLE
statement,
the original table options specified are retained. This allows
you to change between InnoDB
and
MyISAM
table types even though the row
formats supported by the two engines are different.
Because the text of the original statement is retained, but
due to the way that certain values and options may be silently
reconfigured (such as the ROW_FORMAT
), the
active table definition (accessible through
DESCRIBE
or with SHOW TABLE
STATUS
and the table creation string (accessible
through SHOW CREATE TABLE
) will report
different values.
You can create one table from another by adding a
SELECT
statement at the end of the
CREATE TABLE
statement:
CREATE TABLEnew_tbl
SELECT * FROMorig_tbl
;
MySQL creates new columns for all elements in the
SELECT
. For example:
mysql>CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
->PRIMARY KEY (a), KEY(b))
->ENGINE=MyISAM SELECT b,c FROM test2;
This creates a MyISAM
table with three
columns, a
, b
, and
c
. Notice that the columns from the
SELECT
statement are appended to the right
side of the table, not overlapped onto it. Take the following
example:
mysql>SELECT * FROM foo;
+---+ | n | +---+ | 1 | +---+ mysql>CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec) Records: 1 Duplicates: 0 Warnings: 0 mysql>SELECT * FROM bar;
+------+---+ | m | n | +------+---+ | NULL | 1 | +------+---+ 1 row in set (0.00 sec)
For each row in table foo
, a row is inserted
in bar
with the values from
foo
and default values for the new columns.
In a table resulting from CREATE TABLE ...
SELECT
, columns named only in the CREATE
TABLE
part come first. Columns named in both parts or
only in the SELECT
part come after that. The
data type of SELECT
columns can be overridden
by also specifying the column in the CREATE
TABLE
part.
If any errors occur while copying the data to the table, it is automatically dropped and not created.
CREATE TABLE ... SELECT
does not
automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If
you want to have indexes in the created table, you should
specify these before the SELECT
statement:
mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;
Some conversion of data types might occur. For example, the
AUTO_INCREMENT
attribute is not preserved,
and VARCHAR
columns can become
CHAR
columns. Retrained attributes are
NULL
(or NOT NULL
) and,
for those columns that have them, CHARACTER
SET
, COLLATION
,
COMMENT
, and the DEFAULT
clause.
When creating a table with CREATE ... SELECT
,
make sure to alias any function calls or expressions in the
query. If you do not, the CREATE
statement
might fail or result in undesirable column names.
CREATE TABLE artists_and_works SELECT artist.name, COUNT(work.artist_id) AS number_of_works FROM artist LEFT JOIN work ON artist.id = work.artist_id GROUP BY artist.id;
You can also explicitly specify the data type for a generated column:
CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;
Use LIKE
to create an empty table based on
the definition of another table, including any column attributes
and indexes defined in the original table:
CREATE TABLEnew_tbl
LIKEorig_tbl
;
The copy is created using the same version of the table storage
format as the original table. The SELECT
privilege is required on the original table.
CREATE TABLE ... LIKE
does not preserve any
DATA DIRECTORY
or INDEX
DIRECTORY
table options that were specified for the
original table, or any foreign key definitions.
You can precede the SELECT
by
IGNORE
or REPLACE
to
indicate how to handle rows that duplicate unique key values.
With IGNORE
, new rows that duplicate an
existing row on a unique key value are discarded. With
REPLACE
, new rows replace rows that have the
same unique key value. If neither IGNORE
nor
REPLACE
is specified, duplicate unique key
values result in an error.
To ensure that the binary log can be used to re-create the
original tables, MySQL does not allow concurrent inserts during
CREATE TABLE ... SELECT
.
In some cases, MySQL silently changes column specifications
from those given in a CREATE TABLE
or
ALTER TABLE
statement. These might be
changes to a data type, to attributes associated with a data
type, or to an index specification.
TIMESTAMP
display sizes are discarded.
Also note that TIMESTAMP
columns are
NOT NULL
by default.
Columns that are part of a PRIMARY KEY
are made NOT NULL
even if not declared
that way.
Trailing spaces are automatically deleted from
ENUM
and SET
member
values when the table is created.
MySQL maps certain data types used by other SQL database vendors to MySQL types. See Section 10.7, “Using Data Types from Other Database Engines”.
If you include a USING
clause to
specify an index type that is not legal for a given
storage engine, but there is another index type available
that the engine can use without affecting query results,
the engine uses the available type.
If strict SQL mode is not enabled, a
VARCHAR
column with a length
specification greater than 65535 is converted to
TEXT
, and a
VARBINARY
column with a length
specification greater than 65535 is converted to
BLOB
. Otherwise, an error occurs in
either of these cases.
Specifying the CHARACTER SET binary
attribute for a character data type causes the column to
be created as the corresponding binary data type:
CHAR
becomes BINARY
,
VARCHAR
becomes
VARBINARY
, and TEXT
becomes BLOB
. For the
ENUM
and SET
data
types, this does not occur; they are created as declared.
Suppose that you specify a table using this definition:
CREATE TABLE t ( c1 VARCHAR(10) CHARACTER SET binary, c2 TEXT CHARACTER SET binary, c3 ENUM('a','b','c') CHARACTER SET binary );
The resulting table has this definition:
CREATE TABLE t ( c1 VARBINARY(10), c2 BLOB, c3 ENUM('a','b','c') CHARACTER SET binary );
To see whether MySQL used a data type other than the one you
specified, issue a DESCRIBE
or
SHOW CREATE TABLE
statement after creating
or altering the table.
Certain other data type changes can occur if you compress a table using myisampack. See Section 13.4.3.3, “Compressed Table Characteristics”.
CREATE TABLESPACEtablespace_name
ADD DATAFILE 'file_name
' USE LOGFILE GROUPlogfile_group
[EXTENT_SIZE [=]extent_size
] [INITIAL_SIZE [=]initial_size
] [AUTOEXTEND_SIZE [=]autoextend_size
] [MAX_SIZE [=]max_size
] [NODEGROUP [=]nodegroup_id
] [WAIT] [COMMENT [=]comment_text
] ENGINE [=]engine_name
This statement is used to create a tablespace, which can contain
one or more data files, providing storage space for tables. One
data file is created and added to the tablespace using this
statement. Additional data files may be added to the tablespace
by using the ALTER TABLESPACE
statement (see
Section 12.1.5, “ALTER TABLESPACE
Syntax”). For rules covering the
naming of tablespaces, see Section 8.2, “Schema Object Names”.
A log file group of one or more UNDO
log
files must be assigned to the tablespace to be created with the
USE LOGFILE GROUP
clause.
logfile_group
must be an existing log
file group created with CREATE LOGFILE GROUP
(see Section 12.1.8, “CREATE LOGFILE GROUP
Syntax”). Multiple
tablespaces may use the same log file group for
UNDO
logging.
The EXTENT_SIZE
sets the size, in bytes, of
the extents used by any files belonging to the tablespace. The
default value is 1M. The minimum size is 32K, and the
theoretical maximum is 2G, although the practical maximum size
depends on a number of factors.
An extent is a unit of disk space
allocation. One extent is filled with as much data as that
extent can contain before another extent is used. In theory, up
to 65,535 (64K) extents may used per data file; however, the
recommended maximum is 32,768 (32K). The recommended maximum
size for a single data file is 32G — that is, 32K extents
× 1 MB per extent. Smaller extents have the advantage that
they tend to provide lower latency; however, larger extents tend
to allow for greater throughput. You must also take into
consideration that larger extents may mean longer node restart
times. In addition, once an extent is allocated to a given
table, it cannot be used to store data from another; an extent
cannot store table from more than one table. This means, for
example that a tablespace having a single datafile whose
INITIAL_SIZE
is 256 MB and whose
EXTENT_SIZE
is 128M has just two extents, and
so can be used to store data from at most two different disk
data tables.
You can see how many extents remain free in a given data file by
querying the INFORMATION_SCHEMA.FILES
table,
and so derive an estimate for how much space remains free in the
file. For further discussion and examples, see
Section 27.21, “The INFORMATION_SCHEMA FILES
Table”.
The INITIAL_SIZE
parameter sets the data
file's total size in bytes. Once the file has been created, its
size cannot be changed; however, you can add more data files to
the tablespace using ALTER TABLESPACE ... ADD
DATAFILE
. See Section 12.1.5, “ALTER TABLESPACE
Syntax”.
INITIAL_SIZE
is optional; its default value
is 128M
.
On 32-bit systems, the maximum supported value for
INITIAL_SIZE
is 4G
. (Bug#29186)
When setting EXTENT_SIZE
or
INITIAL_SIZE
(either or both), you may
optionally follow the number with a one-letter abbreviation for
an order of magnitude, similar to those used in
my.cnf
. Generally, this is one of the
letters M
(for megabytes) or
G
(for gigabytes).
AUTOEXTEND_SIZE
, MAX_SIZE
,
NODEGROUP
, WAIT
, and
COMMENT
are parsed but ignored, and so have
no effect in MySQL 5.1. These options are intended
for future expansion.
The ENGINE
parameter determines the storage
engine which uses this tablespace, with
engine_name
being the name of the
storage engine. In MySQL 5.1,
engine_name
must be one of the values
NDB
or NDBCLUSTER
.
When CREATE TABLESPACE
is used with
ENGINE = NDB
, a tablespace and associated
data file are created on each Cluster data node. You can verify
that the data files were created and obtain information about
them by querying the INFORMATION_SCHEMA.FILES
table. For example:
mysql>SELECT LOGFILE_GROUP_NAME, FILE_NAME, EXTRA
->FROM INFORMATION_SCHEMA.FILES
->WHERE TABLESPACE_NAME = 'newts' AND FILE_TYPE = 'DATAFILE';
+--------------------+-------------+----------------+ | LOGFILE_GROUP_NAME | FILE_NAME | EXTRA | +--------------------+-------------+----------------+ | lg_3 | newdata.dat | CLUSTER_NODE=3 | | lg_3 | newdata.dat | CLUSTER_NODE=4 | +--------------------+-------------+----------------+ 2 rows in set (0.01 sec)
(See Section 27.21, “The INFORMATION_SCHEMA FILES
Table”.)
CREATE TABLESPACE
was added in MySQL 5.1.6.
In MySQL 5.1, it is useful only with Disk Data storage for MySQL
Cluster. See Section 20.12, “MySQL Cluster Disk Data Tables”.
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name
DROP DATABASE
drops all tables in the
database and deletes the database. Be very
careful with this statement! To use DROP
DATABASE
, you need the DROP
privilege on the database. DROP SCHEMA
is a
synonym for DROP DATABASE
.
When a database is dropped, user privileges on the database
are not automatically dropped. See
Section 12.5.1.3, “GRANT
Syntax”.
IF EXISTS
is used to prevent an error from
occurring if the database does not exist.
If you use DROP DATABASE
on a symbolically
linked database, both the link and the original database are
deleted.
DROP DATABASE
returns the number of tables
that were removed. This corresponds to the number of
.frm
files removed.
The DROP DATABASE
statement removes from the
given database directory those files and directories that MySQL
itself may create during normal operation:
All files with these extensions:
.BAK | .DAT | .HSH | .MRG |
.MYD | .MYI | .TRG | .TRN |
.db | .frm | .ibd | .ndb |
.par |
The db.opt
file, if it exists.
If other files or directories remain in the database directory
after MySQL removes those just listed, the database directory
cannot be removed. In this case, you must remove any remaining
files or directories manually and issue the DROP
DATABASE
statement again.
You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.
DROP [ONLINE|OFFLINE] INDEXindex_name
ONtbl_name
DROP INDEX
drops the index named
index_name
from the table
tbl_name
. This statement is mapped to
an ALTER TABLE
statement to drop the index.
See Section 12.1.4, “ALTER TABLE
Syntax”.
Beginning with MySQL 5.1.7, indexes on variable-width columns are dropped online; that is, dropping the indexes does not require any copying or locking of the table. This is done automatically by the server whenever it determines that it is possible to do so; you do not have to use any special SQL syntax or server options to cause it to happen.
In standard MySQL 5.1 releases, it is not possible
to override the server when it determines that an index is to be
dropped online. In MySQL Cluster, beginning with MySQL Cluster
NDB 6.2.5 and MySQL Cluster NDB 6.3.3, you can drop indexes
offline (which causes the table to be locked) using the
OFFLINE
keyword. The rules and limitations
governing online DROP OFFLINE INDEX
and
DROP ONLINE INDEX
are the same as for
ALTER OFFLINE TABLE ... DROP INDEX
and
ALTER ONLINE TABLE ... DROP INDEX
. You cannot
cause the online dropping of an index that would normally be
dropped offline by using the ONLINE
keyword
(if it is not possible to perform the DROP
operation online, then the ONLINE
keyword is
ignored). For more information, see
Section 12.1.4, “ALTER TABLE
Syntax”.
The ONLINE
and OFFLINE
keywords are available only in MySQL Cluster NDB 6.2 and MySQL
Cluster NDB 6.3 releases beginning with versions 6.2.5 and
6.3.3, respectively; attempting to use them in earlier MySQL
Cluster NDB 6.2 or 6.3 releases, standard MySQL 5.1 releases,
or MySQL Cluster NDB 6.1 releases results in a syntax error.
DROP LOGFILE GROUPlogfile_group
ENGINE [=]engine_name
This statement drops the log file group named
logfile_group
. The log file group
must already exist or an error results. (For information on
creating log file groups, see
Section 12.1.8, “CREATE LOGFILE GROUP
Syntax”.)
Before dropping a log file group, you must drop all
tablespaces that use that log file group for
UNDO
logging.
The required ENGINE
clause provides the name
of the storage engine used by the log file group to be dropped.
In MySQL 5.1, the only permitted values for
engine_name
are
NDB
and NDBCLUSTER
.
DROP LOGFILE GROUP
was added in MySQL 5.1.6.
In MySQL 5.1, it is useful only with Disk Data storage for MySQL
Cluster. See Section 20.12, “MySQL Cluster Disk Data Tables”.
DROP SERVER [ IF EXISTS ] server_name
Drops the server definition for the server named
. The
corresponding row within the server_name
mysql.servers
table will be deleted. This statement requires the
SUPER
privilege.
Dropping a server for a table does not affect any
FEDERATED
tables that used this connection
information when they were created. See
Section 12.1.9, “CREATE SERVER
Syntax”.
DROP SERVER
does not cause an automatic
commit.
DROP SERVER
was added in MySQL 5.1.15.
DROP [TEMPORARY] TABLE [IF EXISTS]tbl_name
[,tbl_name
] ... [RESTRICT | CASCADE]
DROP TABLE
removes one or more tables. You
must have the DROP
privilege for each table.
All table data and the table definition are
removed, so be careful
with this statement! If any of the tables named in the argument
list do not exist, MySQL returns an error indicating by name
which non-existing tables it was unable to drop, but it also
drops all of the tables in the list that do exist.
When a table is dropped, user privileges on the table are
not automatically dropped. See
Section 12.5.1.3, “GRANT
Syntax”.
Note that for a partitioned table, DROP TABLE
permanently removes the table definition, all of its partitions,
and all of the data which was stored in those partitions. It
also removes the partitioning definition
(.par
) file associated with the dropped
table.
Use IF EXISTS
to prevent an error from
occurring for tables that do not exist. A
NOTE
is generated for each non-existent table
when using IF EXISTS
. See
Section 12.5.4.32, “SHOW WARNINGS
Syntax”.
RESTRICT
and CASCADE
are
allowed to make porting easier. In MySQL 5.1, they
do nothing.
DROP TABLE
automatically commits the
current active transaction, unless you use the
TEMPORARY
keyword.
The TEMPORARY
keyword has the following
effects:
The statement drops only TEMPORARY
tables.
The statement does not end an ongoing transaction.
No access rights are checked. (A
TEMPORARY
table is visible only to the
client that created it, so no check is necessary.)
Using TEMPORARY
is a good way to ensure that
you do not accidentally drop a non-TEMPORARY
table.
DROP TABLESPACEtablespace_name
ENGINE [=]engine_name
This statement drops a tablespace that was previously created
using CREATE TABLESPACE
(see
Section 12.1.11, “CREATE TABLESPACE
Syntax”).
The tablespace to be dropped must not contain any data files;
in other words, before you can drop a tablespace, you must
first drop each of its data files using ALTER
TABLESPACE ... DROP DATAFILE
(see
Section 12.1.5, “ALTER TABLESPACE
Syntax”).
The ENGINE
clause (required) specifies the
storage engine used by the tablespace. In MySQL 5.1, the only
accepted values for engine_name
are
NDB
and NDBCLUSTER
.
DROP TABLESPACE
was added in MySQL 5.1.6. In
MySQL 5.1, it is useful only with Disk Data storage for MySQL
Cluster. See Section 20.12, “MySQL Cluster Disk Data Tables”.
RENAME {DATABASE | SCHEMA}db_name
TOnew_db_name
;
This statement was added in MySQL 5.1.7 but was found to be
dangerous and was removed in MySQL 5.1.23. It was intended to
enable upgrading pre-5.1 databases to use the encoding
implemented in 5.1 for mapping database names to database
directory names (see Section 8.2.3, “Mapping of Identifiers to Filenames”).
However, use of this statement could result in loss of database
contents, which is why it was removed. Do not use
RENAME DATABASE
in earlier versions in which
it is present.
To perform the task of upgrading database names with the new
encoding, use ALTER DATABASE
instead (see Section 12.1.1, “db_name
UPGRADE DATA DIRECTORY
NAMEALTER DATABASE
Syntax”).
RENAME TABLEtbl_name
TOnew_tbl_name
[,tbl_name2
TOnew_tbl_name2
] ...
This statement renames one or more tables.
The rename operation is done atomically, which means that no
other thread can access any of the tables while the rename is
running. For example, if you have an existing table
old_table
, you can create another table
new_table
that has the same structure but is
empty, and then replace the existing table with the empty one as
follows (assuming that backup_table
does not
already exist):
CREATE TABLE new_table (...); RENAME TABLE old_table TO backup_table, new_table TO old_table;
If the statement renames more than one table, renaming
operations are done from left to right. If you want to swap two
table names, you can do so like this (assuming that
tmp_table
does not already exist):
RENAME TABLE old_table TO tmp_table, new_table TO old_table, tmp_table TO new_table;
As long as two databases are on the same filesystem, you can use
RENAME TABLE
to move a table from one
database to another:
RENAME TABLEcurrent_db.tbl_name
TOother_db.tbl_name;
If there are any triggers associated with a table which is moved
to a different database using RENAME TABLE
,
then the statement fails with the error Trigger in
wrong schema.
RENAME TABLE
also works for views, as long as
you do not try to rename a view into a different database.
Any privileges granted specifically for the renamed table or view are not migrated to the new name. They must be changed manually.
When you execute RENAME
, you cannot have any
locked tables or active transactions. You must also have the
ALTER
and DROP
privileges
on the original table, and the CREATE
and
INSERT
privileges on the new table.
If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed tables to return everything to its original state.
Single-table syntax:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROMtbl_name
[WHEREwhere_condition
] [ORDER BY ...] [LIMITrow_count
]
Multiple-table syntax:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]tbl_name
[.*] [,tbl_name
[.*]] ... FROMtable_references
[WHEREwhere_condition
]
Or:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROMtbl_name
[.*] [,tbl_name
[.*]] ... USINGtable_references
[WHEREwhere_condition
]
For the single-table syntax, the DELETE
statement deletes rows from tbl_name
and returns a count of the number of deleted rows. This count
can be obtained by calling the
ROW_COUNT()
function (see
Section 11.11.3, “Information Functions”). The
WHERE
clause, if given, specifies the
conditions that identify which rows to delete. With no
WHERE
clause, all rows are deleted. If the
ORDER BY
clause is specified, the rows are
deleted in the order that is specified. The
LIMIT
clause places a limit on the number of
rows that can be deleted.
For the multiple-table syntax, DELETE
deletes
from each tbl_name
the rows that
satisfy the conditions. In this case, ORDER
BY
and LIMIT
cannot be used.
where_condition
is an expression that
evaluates to true for each row to be deleted. It is specified as
described in Section 12.2.7, “SELECT
Syntax”.
Currently, you cannot delete from a table and select from the same table in a subquery.
As stated, a DELETE
statement with no
WHERE
clause deletes all rows. A faster way
to do this, when you do not need to know the number of deleted
rows, is to use TRUNCATE TABLE
. However,
within a transaction or if you have a lock on the table,
TRUNCATE TABLE
cannot be used whereas
DELETE
can. See Section 12.2.9, “TRUNCATE
Syntax”,
and Section 12.4.5, “LOCK TABLES
and UNLOCK TABLES
Syntax”.
If you delete the row containing the maximum value for an
AUTO_INCREMENT
column, the value is not
reused for a MyISAM
or
InnoDB
table. If you delete all rows in the
table with DELETE FROM
(without a
tbl_name
WHERE
clause) in
AUTOCOMMIT
mode, the sequence starts over for
all storage engines except InnoDB
and
MyISAM
. There are some exceptions to this
behavior for InnoDB
tables, as discussed in
Section 13.5.6.3, “How AUTO_INCREMENT
Handling Works in
InnoDB
”.
For MyISAM
tables, you can specify an
AUTO_INCREMENT
secondary column in a
multiple-column key. In this case, reuse of values deleted from
the top of the sequence occurs even for
MyISAM
tables. See
Section 3.6.9, “Using AUTO_INCREMENT
”.
The DELETE
statement supports the following
modifiers:
If you specify LOW_PRIORITY
, the server
delays execution of the DELETE
until no
other clients are reading from the table. This affects only
storage engines that use only table-level locking
(MyISAM
, MEMORY
,
MERGE
).
For MyISAM
tables, if you use the
QUICK
keyword, the storage engine does
not merge index leaves during delete, which may speed up
some kinds of delete operations.
The IGNORE
keyword causes MySQL to ignore
all errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the
usual manner.) Errors that are ignored due to the use of
IGNORE
are returned as warnings.
The speed of delete operations may also be affected by factors
discussed in Section 7.2.21, “Speed of DELETE
Statements”.
In MyISAM
tables, deleted rows are maintained
in a linked list and subsequent INSERT
operations reuse old row positions. To reclaim unused space and
reduce file sizes, use the OPTIMIZE TABLE
statement or the myisamchk utility to
reorganize tables. OPTIMIZE TABLE
is easier
to use, but myisamchk is faster. See
Section 12.5.2.5, “OPTIMIZE TABLE
Syntax”, and
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
The QUICK
modifier affects whether index
leaves are merged for delete operations. DELETE
QUICK
is most useful for applications where index
values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by
deleted values are reused.
DELETE QUICK
is not useful when deleted
values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case,
use of QUICK
can lead to wasted space in the
index that remains unreclaimed. Here is an example of such a
scenario:
Create a table that contains an indexed
AUTO_INCREMENT
column.
Insert many rows into the table. Each insert results in an index value that is added to the high end of the index.
Delete a block of rows at the low end of the column range
using DELETE QUICK
.
In this scenario, the index blocks associated with the deleted
index values become underfilled but are not merged with other
index blocks due to the use of QUICK
. They
remain underfilled when new inserts occur, because new rows do
not have index values in the deleted range. Furthermore, they
remain underfilled even if you later use
DELETE
without QUICK
,
unless some of the deleted index values happen to lie in index
blocks within or adjacent to the underfilled blocks. To reclaim
unused index space under these circumstances, use
OPTIMIZE TABLE
.
If you are going to delete many rows from a table, it might be
faster to use DELETE QUICK
followed by
OPTIMIZE TABLE
. This rebuilds the index
rather than performing many index block merge operations.
The MySQL-specific LIMIT
option to
row_count
DELETE
tells the server the maximum number of
rows to be deleted before control is returned to the client.
This can be used to ensure that a given
DELETE
statement does not take too much time.
You can simply repeat the DELETE
statement
until the number of affected rows is less than the
LIMIT
value.
If the DELETE
statement includes an
ORDER BY
clause, rows are deleted in the
order specified by the clause. This is useful primarily in
conjunction with LIMIT
. For example, the
following statement finds rows matching the
WHERE
clause, sorts them by
timestamp_column
, and deletes the first
(oldest) one:
DELETE FROM somelog WHERE user = 'jcole' ORDER BY timestamp_column LIMIT 1;
ORDER BY
may also be useful in some cases to
delete rows in an order required to avoid referential integrity
violations.
You can specify multiple tables in a DELETE
statement to delete rows from one or more tables depending on
the particular condition in the WHERE
clause.
However, you cannot use ORDER BY
or
LIMIT
in a multiple-table
DELETE
. The
table_references
clause lists the
tables involved in the join. Its syntax is described in
Section 12.2.7.1, “JOIN
Syntax”.
For the first multiple-table syntax, only matching rows from the
tables listed before the FROM
clause are
deleted. For the second multiple-table syntax, only matching
rows from the tables listed in the FROM
clause (before the USING
clause) are deleted.
The effect is that you can delete rows from many tables at the
same time and have additional tables that are used only for
searching:
DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3 WHERE t1.id=t2.id AND t2.id=t3.id;
Or:
DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3 WHERE t1.id=t2.id AND t2.id=t3.id;
These statements use all three tables when searching for rows to
delete, but delete matching rows only from tables
t1
and t2
.
The preceding examples show inner joins that use the comma
operator, but multiple-table DELETE
statements can use other types of join allowed in
SELECT
statements, such as LEFT
JOIN
. For example, to delete rows that exist in
t1
that have no match in
t2
, use a LEFT JOIN
:
DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;
The syntax allows .*
after each
tbl_name
for compatibility with
Access.
If you use a multiple-table DELETE
statement
involving InnoDB
tables for which there are
foreign key constraints, the MySQL optimizer might process
tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back.
Instead, you should delete from a single table and rely on the
ON DELETE
capabilities that
InnoDB
provides to cause the other tables to
be modified accordingly.
If you declare an alias for a table, you must use the alias when referring to the table:
DELETE t1 FROM test AS t1, test2 WHERE ...
Table aliases in a multiple-table DELETE
statement should be declared only in the
table_references
part. Elsewhere in
the statement, alias references are allowed but not alias
declarations.
Correct:
DELETE a1, a2 FROM t1 AS a2 INNER JOIN t2 AS a2 WHERE a1.id=a2.id; DELETE FROM a1, a2 USING t1 AS a2 INNER JOIN t2 AS a2 WHERE a1.id=a2.id;
Incorrect:
DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2 WHERE a1.id=a2.id; DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2 WHERE a1.id=a2.id;
Declaration of aliases other than in the
table_references
part can lead to
ambiguous statements that have unexpected results such as
deleting rows from the wrong table. This is such a statement:
DELETE FROM t1 AS a2 USING t1 AS a1 INNER JOIN t2 AS a2;
Before MySQL 5.1.23, alias declarations are allowed in other
than the table_references
part, but
should be avoided for the reason just mentioned.
Cross-database deletes are supported for multiple-table deletes, but in this case, you must refer to the tables without using aliases. For example:
DELETE test1.tmp1, test2.tmp2 FROM test1.tmp1, test2.tmp2 WHERE ...
DOexpr
[,expr
] ...
DO
executes the expressions but does not
return any results. In most respects, DO
is
shorthand for SELECT
, but has the advantage that it is slightly faster
when you do not care about the result.
expr
,
...
DO
is useful primarily with functions that
have side effects, such as
RELEASE_LOCK()
.
HANDLERtbl_name
OPEN [ [AS]alias
] HANDLERtbl_name
READindex_name
{ = | >= | <= | < } (value1
,value2
,...) [ WHEREwhere_condition
] [LIMIT ... ] HANDLERtbl_name
READindex_name
{ FIRST | NEXT | PREV | LAST } [ WHEREwhere_condition
] [LIMIT ... ] HANDLERtbl_name
READ { FIRST | NEXT } [ WHEREwhere_condition
] [LIMIT ... ] HANDLERtbl_name
CLOSE
The HANDLER
statement provides direct access
to table storage engine interfaces. It is available for
MyISAM
and InnoDB
tables.
The HANDLER ... OPEN
statement opens a table,
making it accessible via subsequent HANDLER ...
READ
statements. This table object is not shared by
other threads and is not closed until the thread calls
HANDLER ... CLOSE
or the thread terminates.
If you open the table using an alias, further references to the
open table with other HANDLER
statements must
use the alias rather than the table name.
The first HANDLER ... READ
syntax fetches a
row where the index specified satisfies the given values and the
WHERE
condition is met. If you have a
multiple-column index, specify the index column values as a
comma-separated list. Either specify values for all the columns
in the index, or specify values for a leftmost prefix of the
index columns. Suppose that an index my_idx
includes three columns named col_a
,
col_b
, and col_c
, in that
order. The HANDLER
statement can specify
values for all three columns in the index, or for the columns in
a leftmost prefix. For example:
HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ... HANDLER ... READ my_idx = (col_a_val,col_b_val) ... HANDLER ... READ my_idx = (col_a_val) ...
To employ the HANDLER
interface to refer to a
table's PRIMARY KEY
, use the quoted
identifier `PRIMARY`
:
HANDLER tbl_name
READ `PRIMARY` ...
The second HANDLER ... READ
syntax fetches a
row from the table in index order that matches the
WHERE
condition.
The third HANDLER ... READ
syntax fetches a
row from the table in natural row order that matches the
WHERE
condition. It is faster than
HANDLER
when a full
table scan is desired. Natural row order is the order in which
rows are stored in a tbl_name
READ
index_name
MyISAM
table data file.
This statement works for InnoDB
tables as
well, but there is no such concept because there is no separate
data file.
Without a LIMIT
clause, all forms of
HANDLER ... READ
fetch a single row if one is
available. To return a specific number of rows, include a
LIMIT
clause. It has the same syntax as for
the SELECT
statement. See
Section 12.2.7, “SELECT
Syntax”.
HANDLER ... CLOSE
closes a table that was
opened with HANDLER ... OPEN
.
HANDLER
is a somewhat low-level statement.
For example, it does not provide consistency. That is,
HANDLER ... OPEN
does
not take a snapshot of the table, and does
not lock the table. This means that after a
HANDLER ... OPEN
statement is issued, table
data can be modified (by the current thread or other threads)
and these modifications might be only partially visible to
HANDLER ... NEXT
or HANDLER ...
PREV
scans.
There are several reasons to use the HANDLER
interface instead of normal SELECT
statements:
HANDLER
is faster than
SELECT
:
A designated storage engine handler object is allocated
for the HANDLER ... OPEN
. The object
is reused for subsequent HANDLER
statements for that table; it need not be reinitialized
for each one.
There is less parsing involved.
There is no optimizer or query-checking overhead.
The table does not have to be locked between two handler requests.
The handler interface does not have to provide a
consistent look of the data (for example, dirty reads
are allowed), so the storage engine can use
optimizations that SELECT
does not
normally allow.
For applications that use a low-level
ISAM
-like interface,
HANDLER
makes it much easier to port them
to MySQL.
HANDLER
enables you to traverse a
database in a manner that is difficult (or even impossible)
to accomplish with SELECT
. The
HANDLER
interface is a more natural way
to look at data when working with applications that provide
an interactive user interface to the database.
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE] [INTO]tbl_name
[(col_name
,...)] {VALUES | VALUE} ({expr
| DEFAULT},...),(...),... [ ON DUPLICATE KEY UPDATEcol_name
=expr
[,col_name
=expr
] ... ]
Or:
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE] [INTO]tbl_name
SETcol_name
={expr
| DEFAULT}, ... [ ON DUPLICATE KEY UPDATEcol_name
=expr
[,col_name
=expr
] ... ]
Or:
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO]tbl_name
[(col_name
,...)] SELECT ... [ ON DUPLICATE KEY UPDATEcol_name
=expr
[,col_name
=expr
] ... ]
INSERT
inserts new rows into an existing
table. The INSERT ... VALUES
and
INSERT ... SET
forms of the statement insert
rows based on explicitly specified values. The INSERT
... SELECT
form inserts rows selected from another
table or tables. INSERT ... SELECT
is
discussed further in Section 12.2.4.1, “INSERT ... SELECT
Syntax”.
You can use REPLACE
instead of
INSERT
to overwrite old rows.
REPLACE
is the counterpart to INSERT
IGNORE
in the treatment of new rows that contain
unique key values that duplicate old rows: The new rows are used
to replace the old rows rather than being discarded. See
Section 12.2.6, “REPLACE
Syntax”.
tbl_name
is the table into which rows
should be inserted. The columns for which the statement provides
values can be specified as follows:
You can provide a comma-separated list of column names
following the table name. In this case, a value for each
named column must be provided by the
VALUES
list or the
SELECT
statement.
If you do not specify a list of column names for
INSERT ... VALUES
or INSERT ...
SELECT
, values for every column in the table must
be provided by the VALUES
list or the
SELECT
statement. If you do not know the
order of the columns in the table, use DESCRIBE
to find out.
tbl_name
The SET
clause indicates the column names
explicitly.
Column values can be given in several ways:
If you are not running in strict SQL mode, any column not explicitly given a value is set to its default (explicit or implicit) value. For example, if you specify a column list that does not name all the columns in the table, unnamed columns are set to their default values. Default value assignment is described in Section 10.1.4, “Data Type Default Values”. See also Section 1.8.6.2, “Constraints on Invalid Data”.
If you want an INSERT
statement to
generate an error unless you explicitly specify values for
all columns that do not have a default value, you should use
strict mode. See Section 5.1.7, “SQL Modes”.
Use the keyword DEFAULT
to set a column
explicitly to its default value. This makes it easier to
write INSERT
statements that assign
values to all but a few columns, because it enables you to
avoid writing an incomplete VALUES
list
that does not include a value for each column in the table.
Otherwise, you would have to write out the list of column
names corresponding to each value in the
VALUES
list.
You can also use
DEFAULT(
as a more general form that can be used in expressions to
produce a given column's default value.
col_name
)
If both the column list and the VALUES
list are empty, INSERT
creates a row with
each column set to its default value:
INSERT INTO tbl_name
() VALUES();
In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses the implicit default value for any column that does not have an explicitly defined default.
You can specify an expression
expr
to provide a column value.
This might involve type conversion if the type of the
expression does not match the type of the column, and
conversion of a given value can result in different inserted
values depending on the data type. For example, inserting
the string '1999.0e-2'
into an
INT
, FLOAT
,
DECIMAL(10,6)
, or YEAR
column results in the values 1999
,
19.9921
, 19.992100
,
and 1999
being inserted, respectively.
The reason the value stored in the INT
and YEAR
columns is
1999
is that the string-to-integer
conversion looks only at as much of the initial part of the
string as may be considered a valid integer or year. For the
floating-point and fixed-point columns, the
string-to-floating-point conversion considers the entire
string a valid floating-point value.
An expression expr
can refer to
any column that was set earlier in a value list. For
example, you can do this because the value for
col2
refers to col1
,
which has previously been assigned:
INSERT INTO tbl_name
(col1,col2) VALUES(15,col1*2);
But the following is not legal, because the value for
col1
refers to col2
,
which is assigned after col1
:
INSERT INTO tbl_name
(col1,col2) VALUES(col2*2,15);
One exception involves columns that contain
AUTO_INCREMENT
values. Because the
AUTO_INCREMENT
value is generated after
other value assignments, any reference to an
AUTO_INCREMENT
column in the assignment
returns a 0
.
INSERT
statements that use
VALUES
syntax can insert multiple rows. To do
this, include multiple lists of column values, each enclosed
within parentheses and separated by commas. Example:
INSERT INTO tbl_name
(a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);
The values list for each row must be enclosed within parentheses. The following statement is illegal because the number of values in the list does not match the number of column names:
INSERT INTO tbl_name
(a,b,c) VALUES(1,2,3,4,5,6,7,8,9);
The affected-rows value for an INSERT
can be
obtained using the ROW_COUNT()
function (see Section 11.11.3, “Information Functions”), or the
mysql_affected_rows()
C API
function (see Section 29.2.3.1, “mysql_affected_rows()
”).
If you use an INSERT ... VALUES
statement
with multiple value lists or INSERT ...
SELECT
, the statement returns an information string in
this format:
Records: 100 Duplicates: 0 Warnings: 0
Records
indicates the number of rows
processed by the statement. (This is not necessarily the number
of rows actually inserted because Duplicates
can be non-zero.) Duplicates
indicates the
number of rows that could not be inserted because they would
duplicate some existing unique index value.
Warnings
indicates the number of attempts to
insert column values that were problematic in some way. Warnings
can occur under any of the following conditions:
Inserting NULL
into a column that has
been declared NOT NULL
. For multiple-row
INSERT
statements or INSERT INTO
... SELECT
statements, the column is set to the
implicit default value for the column data type. This is
0
for numeric types, the empty string
(''
) for string types, and the
“zero” value for date and time types.
INSERT INTO ... SELECT
statements are
handled the same way as multiple-row inserts because the
server does not examine the result set from the
SELECT
to see whether it returns a single
row. (For a single-row INSERT
, no warning
occurs when NULL
is inserted into a
NOT NULL
column. Instead, the statement
fails with an error.)
Setting a numeric column to a value that lies outside the column's range. The value is clipped to the closest endpoint of the range.
Assigning a value such as '10.34 a'
to a
numeric column. The trailing non-numeric text is stripped
off and the remaining numeric part is inserted. If the
string value has no leading numeric part, the column is set
to 0
.
Inserting a string into a string column
(CHAR
, VARCHAR
,
TEXT
, or BLOB
) that
exceeds the column's maximum length. The value is truncated
to the column's maximum length.
Inserting a value into a date or time column that is illegal for the data type. The column is set to the appropriate zero value for the type.
If you are using the C API, the information string can be
obtained by invoking the
mysql_info()
function. See
Section 29.2.3.35, “mysql_info()
”.
If INSERT
inserts a row into a table that has
an AUTO_INCREMENT
column, you can find the
value used for that column by using the SQL
LAST_INSERT_ID()
function. From
within the C API, use the
mysql_insert_id()
function.
However, you should note that the two functions do not always
behave identically. The behavior of INSERT
statements with respect to AUTO_INCREMENT
columns is discussed further in
Section 11.11.3, “Information Functions”, and
Section 29.2.3.37, “mysql_insert_id()
”.
The INSERT
statement supports the following
modifiers:
If you use the DELAYED
keyword, the
server puts the row or rows to be inserted into a buffer,
and the client issuing the INSERT DELAYED
statement can then continue immediately. If the table is in
use, the server holds the rows. When the table is free, the
server begins inserting rows, checking periodically to see
whether there are any new read requests for the table. If
there are, the delayed row queue is suspended until the
table becomes free again. See
Section 12.2.4.2, “INSERT DELAYED
Syntax”.
DELAYED
is ignored with INSERT
... SELECT
or INSERT ... ON DUPLICATE KEY
UPDATE
.
Beginning with MySQL 5.1.19, DELAYED
is
also disregarded for an INSERT
that uses
functions accessing tables or triggers, or that is called
from a function or a trigger.
If you use the LOW_PRIORITY
keyword,
execution of the INSERT
is delayed until
no other clients are reading from the table. This includes
other clients that began reading while existing clients are
reading, and while the INSERT
LOW_PRIORITY
statement is waiting. It is possible,
therefore, for a client that issues an INSERT
LOW_PRIORITY
statement to wait for a very long
time (or even forever) in a read-heavy environment. (This is
in contrast to INSERT DELAYED
, which lets
the client continue at once. Note that
LOW_PRIORITY
should normally not be used
with MyISAM
tables because doing so
disables concurrent inserts. See
Section 7.3.3, “Concurrent Inserts”.
If you specify HIGH_PRIORITY
, it
overrides the effect of the
--low-priority-updates
option if the server
was started with that option. It also causes concurrent
inserts not to be used. See
Section 7.3.3, “Concurrent Inserts”.
LOW_PRIORITY
and
HIGH_PRIORITY
affect only storage engines
that use only table-level locking
(MyISAM
, MEMORY
,
MERGE
).
If you use the IGNORE
keyword, errors
that occur while executing the INSERT
statement are treated as warnings instead. For example,
without IGNORE
, a row that duplicates an
existing UNIQUE
index or PRIMARY
KEY
value in the table causes a duplicate-key
error and the statement is aborted. With
IGNORE
, the row still is not inserted,
but no error is issued.
IGNORE
has a similar effect on inserts
into partitioned tables where no partition matching a given
value is found. Without IGNORE
, such
INSERT
statements are aborted with an
error; however, when INSERT IGNORE
is
used, the insert operation fails silently for the row
containing the unmatched value, but any rows that are
matched are inserted. For an example, see
Section 21.2.2, “LIST
Partitioning”.
Data conversions that would trigger errors abort the
statement if IGNORE
is not specified.
With IGNORE
, invalid values are adjusted
to the closest values and inserted; warnings are produced
but the statement does not abort. You can determine with the
mysql_info()
C API function
how many rows were actually inserted into the table.
If you specify ON DUPLICATE KEY UPDATE
,
and a row is inserted that would cause a duplicate value in
a UNIQUE
index or PRIMARY
KEY
, an UPDATE
of the old row
is performed. The affected-rows value per row is 1 if the
row is inserted as a new row and 2 if an existing row is
updated. See Section 12.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE
Syntax”.
Inserting into a table requires the INSERT
privilege for the table. If the ON DUPLICATE KEY
UPDATE
clause is used and a duplicate key causes an
UPDATE
to be performed instead, the statement
requires the UPDATE
privilege for the columns
to be updated. For columns that are read but not modified you
need only the SELECT
privilege (such as for a
column referenced only on the right hand side of an
col_name
=expr
assignment in an ON DUPLICATE KEY UPDATE
clause).
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE] [INTO]tbl_name
[(col_name
,...)] SELECT ... [ ON DUPLICATE KEY UPDATEcol_name
=expr
, ... ]
With INSERT ... SELECT
, you can quickly
insert many rows into a table from one or many tables. For
example:
INSERT INTO tbl_temp2 (fld_id) SELECT tbl_temp1.fld_order_id FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;
The following conditions hold for a INSERT ...
SELECT
statements:
Specify IGNORE
to ignore rows that
would cause duplicate-key violations.
DELAYED
is ignored with INSERT
... SELECT
.
The target table of the INSERT
statement may appear in the FROM
clause
of the SELECT
part of the query. (This
was not possible in some older versions of MySQL.) In this
case, MySQL creates a temporary table to hold the rows
from the SELECT
and then inserts those
rows into the target table. However, it remains true that
you cannot use INSERT INTO t ... SELECT ... FROM
t
when t
is a
TEMPORARY
table, because
TEMPORARY
tables cannot be referred to
twice in the same statement (see
Section B.1.7.3, “TEMPORARY TABLE
Problems”).
AUTO_INCREMENT
columns work as usual.
To ensure that the binary log can be used to re-create the
original tables, MySQL does not allow concurrent inserts
for INSERT ... SELECT
statements.
Currently, you cannot insert into a table and select from the same table in a subquery.
To avoid ambigious column reference problems when the
SELECT
and the
INSERT
refer to the same table, provide
a unique alias for each table used in the
SELECT
part, and qualify column names
in that part with the appropriate alias.
In the values part of ON DUPLICATE KEY
UPDATE
, you can refer to columns in other tables, as
long as you do not use GROUP BY
in the
SELECT
part. One side effect is that you
must qualify non-unique column names in the values part.
INSERT DELAYED ...
The DELAYED
option for the
INSERT
statement is a MySQL extension to
standard SQL that is very useful if you have clients that
cannot or need not wait for the INSERT
to
complete. This is a common situation when you use MySQL for
logging and you also periodically run
SELECT
and UPDATE
statements that take a long time to complete.
When a client uses INSERT DELAYED
, it gets
an okay from the server at once, and the row is queued to be
inserted when the table is not in use by any other thread.
Another major benefit of using INSERT
DELAYED
is that inserts from many clients are
bundled together and written in one block. This is much faster
than performing many separate inserts.
Note that INSERT DELAYED
is slower than a
normal INSERT
if the table is not otherwise
in use. There is also the additional overhead for the server
to handle a separate thread for each table for which there are
delayed rows. This means that you should use INSERT
DELAYED
only when you are really sure that you need
it.
The queued rows are held only in memory until they are
inserted into the table. This means that if you terminate
mysqld forcibly (for example, with
kill -9
) or if mysqld
dies unexpectedly, any queued rows that have not
been written to disk are lost.
There are some constraints on the use of
DELAYED
:
INSERT DELAYED
works only with
MyISAM
, MEMORY
,
ARCHIVE
, and (as of MySQL 5.1.19)
BLACKHOLE
tables. See
Section 13.4, “The MyISAM
Storage Engine”,
Section 13.7, “The MEMORY
(HEAP
) Storage Engine”,
Section 13.10, “The ARCHIVE
Storage Engine”, and
Section 13.12, “The BLACKHOLE
Storage Engine”.
For MyISAM
tables, if there are no free
blocks in the middle of the data file, concurrent
SELECT
and INSERT
statements are supported. Under these circumstances, you
very seldom need to use INSERT DELAYED
with MyISAM
.
INSERT DELAYED
should be used only for
INSERT
statements that specify value
lists. The server ignores DELAYED
for
INSERT ... SELECT
or INSERT
... ON DUPLICATE KEY UPDATE
statements.
Because the INSERT DELAYED
statement
returns immediately, before the rows are inserted, you
cannot use
LAST_INSERT_ID()
to get
the AUTO_INCREMENT
value that the
statement might generate.
DELAYED
rows are not visible to
SELECT
statements until they actually
have been inserted.
DELAYED
is ignored on slave replication
servers because it could cause the slave to have different
data than the master.
Pending INSERT DELAYED
statements are
lost if a table is write locked and ALTER
TABLE
is used to modify the table structure.
INSERT DELAYED
is not supported for
views.
INSERT DELAYED
is not supported for
partitioned tables.
The following describes in detail what happens when you use
the DELAYED
option to
INSERT
or REPLACE
. In
this description, the “thread” is the thread that
received an INSERT DELAYED
statement and
“handler” is the thread that handles all
INSERT DELAYED
statements for a particular
table.
When a thread executes a DELAYED
statement for a table, a handler thread is created to
process all DELAYED
statements for the
table, if no such handler already exists.
The thread checks whether the handler has previously
acquired a DELAYED
lock; if not, it
tells the handler thread to do so. The
DELAYED
lock can be obtained even if
other threads have a READ
or
WRITE
lock on the table. However, the
handler waits for all ALTER TABLE
locks
or FLUSH TABLES
statements to finish,
to ensure that the table structure is up to date.
The thread executes the INSERT
statement, but instead of writing the row to the table, it
puts a copy of the final row into a queue that is managed
by the handler thread. Any syntax errors are noticed by
the thread and reported to the client program.
The client cannot obtain from the server the number of
duplicate rows or the AUTO_INCREMENT
value for the resulting row, because the
INSERT
returns before the insert
operation has been completed. (If you use the C API, the
mysql_info()
function
does not return anything meaningful, for the same reason.)
The binary log is updated by the handler thread when the row is inserted into the table. In case of multiple-row inserts, the binary log is updated when the first row is inserted.
Each time that delayed_insert_limit
rows are written, the handler checks whether any
SELECT
statements are still pending. If
so, it allows these to execute before continuing.
When the handler has no more rows in its queue, the table
is unlocked. If no new INSERT DELAYED
statements are received within
delayed_insert_timeout
seconds, the
handler terminates.
If more than delayed_queue_size
rows
are pending in a specific handler queue, the thread
requesting INSERT DELAYED
waits until
there is room in the queue. This is done to ensure that
mysqld does not use all memory for the
delayed memory queue.
The handler thread shows up in the MySQL process list with
delayed_insert
in the
Command
column. It is killed if you
execute a FLUSH TABLES
statement or
kill it with KILL
. However,
before exiting, it first stores all queued rows into the
table. During this time it does not accept any new
thread_id
INSERT
statements from other threads.
If you execute an INSERT DELAYED
statement after this, a new handler thread is created.
Note that this means that INSERT
DELAYED
statements have higher priority than
normal INSERT
statements if there is an
INSERT DELAYED
handler running. Other
update statements have to wait until the INSERT
DELAYED
queue is empty, someone terminates the
handler thread (with KILL
), or
someone executes a thread_id
FLUSH TABLES
.
The following status variables provide information about
INSERT DELAYED
statements:
Status Variable | Meaning |
Delayed_insert_threads | Number of handler threads |
Delayed_writes | Number of rows written with INSERT DELAYED |
Not_flushed_delayed_rows | Number of rows waiting to be written |
You can view these variables by issuing a SHOW
STATUS
statement or by executing a
mysqladmin extended-status command.
If you specify ON DUPLICATE KEY UPDATE
, and
a row is inserted that would cause a duplicate value in a
UNIQUE
index or PRIMARY
KEY
, an UPDATE
of the old row is
performed. For example, if column a
is
declared as UNIQUE
and contains the value
1
, the following two statements have
identical effect:
INSERT INTO table (a,b,c) VALUES (1,2,3) ON DUPLICATE KEY UPDATE c=c+1; UPDATE table SET c=c+1 WHERE a=1;
With ON DUPLICATE KEY UPDATE
, the
affected-rows value per row is 1 if the row is inserted as a
new row and 2 if an existing row is updated.
If column b
is also unique, the
INSERT
is equivalent to this
UPDATE
statement instead:
UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;
If a=1 OR b=2
matches several rows, only
one row is updated. In general, you
should try to avoid using an ON DUPLICATE
KEY
clause on tables with multiple unique indexes.
The ON DUPLICATE KEY UPDATE
clause can
contain multiple column assignments, separated by commas.
You can use the
VALUES(
function in the col_name
)UPDATE
clause to refer to
column values from the INSERT
portion of
the INSERT ... UPDATE
statement. In other
words,
VALUES(
in the col_name
)UPDATE
clause refers to the value of
col_name
that would be inserted,
had no duplicate-key conflict occurred. This function is
especially useful in multiple-row inserts. The
VALUES()
function is
meaningful only in INSERT ... UPDATE
statements and returns NULL
otherwise.
Example:
INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6) ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);
That statement is identical to the following two statements:
INSERT INTO table (a,b,c) VALUES (1,2,3) ON DUPLICATE KEY UPDATE c=3; INSERT INTO table (a,b,c) VALUES (4,5,6) ON DUPLICATE KEY UPDATE c=9;
If a table contains an AUTO_INCREMENT
column and INSERT ... UPDATE
inserts a row,
the LAST_INSERT_ID()
function
returns the AUTO_INCREMENT
value. If the
statement updates a row instead,
LAST_INSERT_ID()
is not
meaningful. However, you can work around this by using
LAST_INSERT_ID(
.
Suppose that expr
)id
is the
AUTO_INCREMENT
column. To make
LAST_INSERT_ID()
meaningful
for updates, insert rows as follows:
INSERT INTO table (a,b,c) VALUES (1,2,3) ON DUPLICATE KEY UPDATE id=LAST_INSERT_ID(id), c=3;
The DELAYED
option is ignored when you use
ON DUPLICATE KEY UPDATE
.
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name
' [REPLACE | IGNORE] INTO TABLEtbl_name
[CHARACTER SETcharset_name
] [FIELDS [TERMINATED BY 'string
'] [[OPTIONALLY] ENCLOSED BY 'char
'] [ESCAPED BY 'char
'] ] [LINES [STARTING BY 'string
'] [TERMINATED BY 'string
'] ] [IGNOREnumber
LINES] [(col_name_or_user_var
,...)] [SETcol_name
=expr
,...]
The LOAD DATA INFILE
statement reads rows
from a text file into a table at a very high speed. The filename
must be given as a literal string.
LOAD DATA INFILE
is the complement of
SELECT ... INTO OUTFILE
. (See
Section 12.2.7, “SELECT
Syntax”.) To write data from a table to a file,
use SELECT ... INTO OUTFILE
. To read the file
back into a table, use LOAD DATA INFILE
. The
syntax of the FIELDS
and
LINES
clauses is the same for both
statements. Both clauses are optional, but
FIELDS
must precede LINES
if both are specified.
For more information about the efficiency of
INSERT
versus LOAD DATA
INFILE
and speeding up LOAD DATA
INFILE
, see Section 7.2.19, “Speed of INSERT
Statements”.
The character set indicated by the
character_set_database
system variable is
used to interpret the information in the file. SET
NAMES
and the setting of
character_set_client
do not affect
interpretation of input. If the contents of the input file use a
character set that differs from the default, it is usually
preferable to specify the character set of the file by using the
CHARACTER SET
clause, which is available as
of MySQL 5.1.17.
LOAD DATA INFILE
interprets all fields in the
file as having the same character set, regardless of the data
types of the columns into which field values are loaded. For
proper interpretation of file contents, you must ensure that it
was written with the correct character set. For example, if you
write a data file with mysqldump -T or by
issuing a SELECT ... INTO OUTFILE
statement
in mysql, be sure to use a
--default-character-set
option with
mysqldump or mysql so that
output is written in the character set to be used when the file
is loaded with LOAD DATA INFILE
.
Note that it is currently not possible to load data files that
use the ucs2
character set.
As of MySQL 5.1.6, the
character_set_filesystem
system variable
controls the interpretation of the filename.
You can also load data files by using the
mysqlimport utility; it operates by sending a
LOAD DATA INFILE
statement to the server. The
--local
option causes
mysqlimport to read data files from the
client host. You can specify the --compress
option to get better performance over slow networks if the
client and server support the compressed protocol. See
Section 4.5.5, “mysqlimport — A Data Import Program”.
If you use LOW_PRIORITY
, execution of the
LOAD DATA
statement is delayed until no other
clients are reading from the table. This affects only storage
engines that use only table-level locking
(MyISAM
, MEMORY
,
MERGE
).
If you specify CONCURRENT
with a
MyISAM
table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the
middle), other threads can retrieve data from the table while
LOAD DATA
is executing. Using this option
affects the performance of LOAD DATA
a bit,
even if no other thread is using the table at the same time.
CONCURRENT
is not replicated when using
statement-based replication; however, it is replicated when
using row-based replication. See
Section 19.3.1.10, “Replication and LOAD DATA
”, for more
information.
Prior to MySQL 5.1.23, LOAD DATA
performed
very poorly when importing into partitioned tables. The
statement now uses buffering to improve performance; however,
the buffer uses 130 KB memory per partition to achieve this.
(Bug#26527)
The LOCAL
keyword, if specified, is
interpreted with respect to the client end of the connection:
If LOCAL
is specified, the file is read
by the client program on the client host and sent to the
server. The file can be given as a full pathname to specify
its exact location. If given as a relative pathname, the
name is interpreted relative to the directory in which the
client program was started.
If LOCAL
is not specified, the file must
be located on the server host and is read directly by the
server. The server uses the following rules to locate the
file:
If the filename is an absolute pathname, the server uses it as given.
If the filename is a relative pathname with one or more leading components, the server searches for the file relative to the server's data directory.
If a filename with no leading components is given, the server looks for the file in the database directory of the default database.
Note that, in the non-LOCAL
case, these rules
mean that a file named as ./myfile.txt
is
read from the server's data directory, whereas the file named as
myfile.txt
is read from the database
directory of the default database. For example, if
db1
is the default database, the following
LOAD DATA
statement reads the file
data.txt
from the database directory for
db1
, even though the statement explicitly
loads the file into a table in the db2
database:
LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;
Windows pathnames are specified using forward slashes rather than backslashes. If you do use backslashes, you must double them.
For security reasons, when reading text files located on the
server, the files must either reside in the database directory
or be readable by all. Also, to use LOAD DATA
INFILE
on server files, you must have the
FILE
privilege. See
Section 5.4.3, “Privileges Provided by MySQL”.
Using LOCAL
is a bit slower than letting the
server access the files directly, because the contents of the
file must be sent over the connection by the client to the
server. On the other hand, you do not need the
FILE
privilege to load local files.
With LOCAL
, the default behavior is the same
as if IGNORE
is specified; this is because
the server has no way to stop transmission of the file in the
middle of the operation. IGNORE
is explained
further later in this section.
LOCAL
works only if your server and your
client both have been enabled to allow it. For example, if
mysqld was started with
--local-infile=0
, LOCAL
does
not work. See Section 5.3.4, “Security Issues with LOAD DATA LOCAL
”.
On Unix, if you need LOAD DATA
to read from a
pipe, you can use the following technique (here we load the
listing of the /
directory into a table):
mkfifo /mysql/db/x/x chmod 666 /mysql/db/x/x find / -ls > /mysql/db/x/x & mysql -e "LOAD DATA INFILE 'x' INTO TABLE x" x
Note that you must run the command that generates the data to be loaded and the mysql commands either on separate terminals, or run the data generation process in the background (as shown in the preceding example). If you do not do this, the pipe will block until data is read by the mysql process.
The REPLACE
and IGNORE
keywords control handling of input rows that duplicate existing
rows on unique key values:
If you specify REPLACE
, input rows
replace existing rows. In other words, rows that have the
same value for a primary key or unique index as an existing
row. See Section 12.2.6, “REPLACE
Syntax”.
If you specify IGNORE
, input rows that
duplicate an existing row on a unique key value are skipped.
If you do not specify either option, the behavior depends on
whether the LOCAL
keyword is specified.
Without LOCAL
, an error occurs when a
duplicate key value is found, and the rest of the text file
is ignored. With LOCAL
, the default
behavior is the same as if IGNORE
is
specified; this is because the server has no way to stop
transmission of the file in the middle of the operation.
If you want to ignore foreign key constraints during the load
operation, you can issue a SET
FOREIGN_KEY_CHECKS=0
statement before executing
LOAD DATA
.
If you use LOAD DATA INFILE
on an empty
MyISAM
table, all non-unique indexes are
created in a separate batch (as for REPAIR
TABLE
). Normally, this makes LOAD DATA
INFILE
much faster when you have many indexes. In some
extreme cases, you can create the indexes even faster by turning
them off with ALTER TABLE ... DISABLE KEYS
before loading the file into the table and using ALTER
TABLE ... ENABLE KEYS
to re-create the indexes after
loading the file. See Section 7.2.19, “Speed of INSERT
Statements”.
For both the LOAD DATA INFILE
and
SELECT ... INTO OUTFILE
statements, the
syntax of the FIELDS
and
LINES
clauses is the same. Both clauses are
optional, but FIELDS
must precede
LINES
if both are specified.
If you specify a FIELDS
clause, each of its
subclauses (TERMINATED BY
,
[OPTIONALLY] ENCLOSED BY
, and
ESCAPED BY
) is also optional, except that you
must specify at least one of them.
If you specify no FIELDS
clause, the defaults
are the same as if you had written this:
FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
If you specify no LINES
clause, the defaults
are the same as if you had written this:
LINES TERMINATED BY '\n' STARTING BY ''
In other words, the defaults cause LOAD DATA
INFILE
to act as follows when reading input:
Look for line boundaries at newlines.
Do not skip over any line prefix.
Break lines into fields at tabs.
Do not expect fields to be enclosed within any quoting characters.
Interpret occurrences of tab, newline, or
“\
” preceded by
“\
” as literal characters
that are part of field values.
Conversely, the defaults cause SELECT ... INTO
OUTFILE
to act as follows when writing output:
Write tabs between fields.
Do not enclose fields within any quoting characters.
Use “\
” to escape instances
of tab, newline, or “\
” that
occur within field values.
Write newlines at the ends of lines.
Backslash is the MySQL escape character within strings, so to
write FIELDS ESCAPED BY '\\'
, you must
specify two backslashes for the value to be interpreted as a
single backslash.
If you have generated the text file on a Windows system, you
might have to use LINES TERMINATED BY
'\r\n'
to read the file properly, because Windows
programs typically use two characters as a line terminator.
Some programs, such as WordPad, might use
\r
as a line terminator when writing files.
To read such files, use LINES TERMINATED BY
'\r'
.
If all the lines you want to read in have a common prefix that
you want to ignore, you can use LINES STARTING BY
'
to skip
over the prefix, and anything before it. If
a line does not include the prefix, the entire line is skipped.
Suppose that you issue the following statement:
prefix_string
'
LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';
If the data file looks like this:
xxx"abc",1 something xxx"def",2 "ghi",3
The resulting rows will be ("abc",1)
and
("def",2)
. The third row in the file is
skipped because it does not contain the prefix.
The IGNORE
option can be used to ignore lines at the start
of the file. For example, you can use number
LINESIGNORE 1
LINES
to skip over an initial header line containing
column names:
LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;
When you use SELECT ... INTO OUTFILE
in
tandem with LOAD DATA INFILE
to write data
from a database into a file and then read the file back into the
database later, the field- and line-handling options for both
statements must match. Otherwise, LOAD DATA
INFILE
will not interpret the contents of the file
properly. Suppose that you use SELECT ... INTO
OUTFILE
to write a file with fields delimited by
commas:
SELECT * INTO OUTFILE 'data.txt' FIELDS TERMINATED BY ',' FROM table2;
To read the comma-delimited file back in, the correct statement would be:
LOAD DATA INFILE 'data.txt' INTO TABLE table2 FIELDS TERMINATED BY ',';
If instead you tried to read in the file with the statement
shown following, it wouldn't work because it instructs
LOAD DATA INFILE
to look for tabs between
fields:
LOAD DATA INFILE 'data.txt' INTO TABLE table2 FIELDS TERMINATED BY '\t';
The likely result is that each input line would be interpreted as a single field.
LOAD DATA INFILE
can be used to read files
obtained from external sources. For example, many programs can
export data in comma-separated values (CSV) format, such that
lines have fields separated by commas and enclosed within double
quotes. If lines in such a file are terminated by newlines, the
statement shown here illustrates the field- and line-handling
options you would use to load the file:
LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n';
If the input values are not necessarily enclosed within quotes,
use OPTIONALLY
before the ENCLOSED
BY
keywords.
Any of the field- or line-handling options can specify an empty
string (''
). If not empty, the
FIELDS [OPTIONALLY] ENCLOSED BY
and
FIELDS ESCAPED BY
values must be a single
character. The FIELDS TERMINATED BY
,
LINES STARTING BY
, and LINES
TERMINATED BY
values can be more than one character.
For example, to write lines that are terminated by carriage
return/linefeed pairs, or to read a file containing such lines,
specify a LINES TERMINATED BY '\r\n'
clause.
To read a file containing jokes that are separated by lines
consisting of %%
, you can do this
CREATE TABLE jokes (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY, joke TEXT NOT NULL); LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes FIELDS TERMINATED BY '' LINES TERMINATED BY '\n%%\n' (joke);
FIELDS [OPTIONALLY] ENCLOSED BY
controls
quoting of fields. For output (SELECT ... INTO
OUTFILE
), if you omit the word
OPTIONALLY
, all fields are enclosed by the
ENCLOSED BY
character. An example of such
output (using a comma as the field delimiter) is shown here:
"1","a string","100.20" "2","a string containing a , comma","102.20" "3","a string containing a \" quote","102.20" "4","a string containing a \", quote and comma","102.20"
If you specify OPTIONALLY
, the
ENCLOSED BY
character is used only to enclose
values from columns that have a string data type (such as
CHAR
, BINARY
,
TEXT
, or ENUM
):
1,"a string",100.20 2,"a string containing a , comma",102.20 3,"a string containing a \" quote",102.20 4,"a string containing a \", quote and comma",102.20
Note that occurrences of the ENCLOSED BY
character within a field value are escaped by prefixing them
with the ESCAPED BY
character. Also note that
if you specify an empty ESCAPED BY
value, it
is possible to inadvertently generate output that cannot be read
properly by LOAD DATA INFILE
. For example,
the preceding output just shown would appear as follows if the
escape character is empty. Observe that the second field in the
fourth line contains a comma following the quote, which
(erroneously) appears to terminate the field:
1,"a string",100.20 2,"a string containing a , comma",102.20 3,"a string containing a " quote",102.20 4,"a string containing a ", quote and comma",102.20
For input, the ENCLOSED BY
character, if
present, is stripped from the ends of field values. (This is
true regardless of whether OPTIONALLY
is
specified; OPTIONALLY
has no effect on input
interpretation.) Occurrences of the ENCLOSED
BY
character preceded by the ESCAPED
BY
character are interpreted as part of the current
field value.
If the field begins with the ENCLOSED BY
character, instances of that character are recognized as
terminating a field value only if followed by the field or line
TERMINATED BY
sequence. To avoid ambiguity,
occurrences of the ENCLOSED BY
character
within a field value can be doubled and are interpreted as a
single instance of the character. For example, if
ENCLOSED BY '"'
is specified, quotes are
handled as shown here:
"The ""BIG"" boss" -> The "BIG" boss The "BIG" boss -> The "BIG" boss The ""BIG"" boss -> The ""BIG"" boss
FIELDS ESCAPED BY
controls how to write or
read special characters. If the FIELDS ESCAPED
BY
character is not empty, it is used to prefix the
following characters on output:
The FIELDS ESCAPED BY
character
The FIELDS [OPTIONALLY] ENCLOSED BY
character
The first character of the FIELDS TERMINATED
BY
and LINES TERMINATED BY
values
ASCII 0
(what is actually written
following the escape character is ASCII
“0
”, not a zero-valued byte)
If the FIELDS ESCAPED BY
character is empty,
no characters are escaped and NULL
is output
as NULL
, not \N
. It is
probably not a good idea to specify an empty escape character,
particularly if field values in your data contain any of the
characters in the list just given.
For input, if the FIELDS ESCAPED BY
character
is not empty, occurrences of that character are stripped and the
following character is taken literally as part of a field value.
Some two-character sequences that are exceptions, where the
first character is the escape character. These sequences are
shown in the following table (using
“\
” for the escape character).
The rules for NULL
handling are described
later in this section.
\0
| An ASCII 0 (NUL ) character |
\b
| A backspace character |
\n
| A newline (linefeed) character |
\r
| A carriage return character |
\t
| A tab character. |
\Z
| ASCII 26 (Control-Z) |
\N
| NULL |
For more information about
“\
”-escape syntax, see
Section 8.1, “Literal Values”.
In certain cases, field- and line-handling options interact:
If LINES TERMINATED BY
is an empty string
and FIELDS TERMINATED BY
is non-empty,
lines are also terminated with FIELDS TERMINATED
BY
.
If the FIELDS TERMINATED BY
and
FIELDS ENCLOSED BY
values are both empty
(''
), a fixed-row (non-delimited) format
is used. With fixed-row format, no delimiters are used
between fields (but you can still have a line terminator).
Instead, column values are read and written using a field
width wide enough to hold all values in the field. For
TINYINT
, SMALLINT
,
MEDIUMINT
, INT
, and
BIGINT
, the field widths are 4, 6, 8, 11,
and 20, respectively, no matter what the declared display
width is.
LINES TERMINATED BY
is still used to
separate lines. If a line does not contain all fields, the
rest of the columns are set to their default values. If you
do not have a line terminator, you should set this to
''
. In this case, the text file must
contain all fields for each row.
Fixed-row format also affects handling of
NULL
values, as described later. Note
that fixed-size format does not work if you are using a
multi-byte character set.
Handling of NULL
values varies according to
the FIELDS
and LINES
options in use:
For the default FIELDS
and
LINES
values, NULL
is
written as a field value of \N
for
output, and a field value of \N
is read
as NULL
for input (assuming that the
ESCAPED BY
character is
“\
”).
If FIELDS ENCLOSED BY
is not empty, a
field containing the literal word NULL
as
its value is read as a NULL
value. This
differs from the word NULL
enclosed
within FIELDS ENCLOSED BY
characters,
which is read as the string 'NULL'
.
If FIELDS ESCAPED BY
is empty,
NULL
is written as the word
NULL
.
With fixed-row format (which is used when FIELDS
TERMINATED BY
and FIELDS ENCLOSED
BY
are both empty), NULL
is
written as an empty string. Note that this causes both
NULL
values and empty strings in the
table to be indistinguishable when written to the file
because both are written as empty strings. If you need to be
able to tell the two apart when reading the file back in,
you should not use fixed-row format.
An attempt to load NULL
into a NOT
NULL
column causes assignment of the implicit default
value for the column's data type and a warning, or an error in
strict SQL mode. Implicit default values are discussed in
Section 10.1.4, “Data Type Default Values”.
Some cases are not supported by LOAD DATA
INFILE
:
Fixed-size rows (FIELDS TERMINATED BY
and
FIELDS ENCLOSED BY
both empty) and
BLOB
or TEXT
columns.
If you specify one separator that is the same as or a prefix
of another, LOAD DATA INFILE
cannot
interpret the input properly. For example, the following
FIELDS
clause would cause problems:
FIELDS TERMINATED BY '"' ENCLOSED BY '"'
If FIELDS ESCAPED BY
is empty, a field
value that contains an occurrence of FIELDS
ENCLOSED BY
or LINES TERMINATED
BY
followed by the FIELDS TERMINATED
BY
value causes LOAD DATA
INFILE
to stop reading a field or line too early.
This happens because LOAD DATA INFILE
cannot properly determine where the field or line value
ends.
The following example loads all columns of the
persondata
table:
LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;
By default, when no column list is provided at the end of the
LOAD DATA INFILE
statement, input lines are
expected to contain a field for each table column. If you want
to load only some of a table's columns, specify a column list:
LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);
You must also specify a column list if the order of the fields in the input file differs from the order of the columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.
The column list can contain either column names or user
variables. With user variables, the SET
clause enables you to perform transformations on their values
before assigning the result to columns.
User variables in the SET
clause can be used
in several ways. The following example uses the first input
column directly for the value of t1.column1
,
and assigns the second input column to a user variable that is
subjected to a division operation before being used for the
value of t1.column2
:
LOAD DATA INFILE 'file.txt' INTO TABLE t1 (column1, @var1) SET column2 = @var1/100;
The SET
clause can be used to supply values
not derived from the input file. The following statement sets
column3
to the current date and time:
LOAD DATA INFILE 'file.txt' INTO TABLE t1 (column1, column2) SET column3 = CURRENT_TIMESTAMP;
You can also discard an input value by assigning it to a user variable and not assigning the variable to a table column:
LOAD DATA INFILE 'file.txt' INTO TABLE t1 (column1, @dummy, column2, @dummy, column3);
Use of the column/variable list and SET
clause is subject to the following restrictions:
Assignments in the SET
clause should have
only column names on the left hand side of assignment
operators.
You can use subqueries in the right hand side of
SET
assignments. A subquery that returns
a value to be assigned to a column may be a scalar subquery
only. Also, you cannot use a subquery to select from the
table that is being loaded.
Lines ignored by an IGNORE
clause are not
processed for the column/variable list or
SET
clause.
User variables cannot be used when loading data with fixed-row format because user variables do not have a display width.
When processing an input line, LOAD DATA
splits it into fields and uses the values according to the
column/variable list and the SET
clause, if
they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT
or
AFTER INSERT
triggers for the table, they are
activated before or after inserting the row, respectively.
If an input line has too many fields, the extra fields are ignored and the number of warnings is incremented.
If an input line has too few fields, the table columns for which input fields are missing are set to their default values. Default value assignment is described in Section 10.1.4, “Data Type Default Values”.
An empty field value is interpreted differently than if the field value is missing:
For string types, the column is set to the empty string.
For numeric types, the column is set to
0
.
For date and time types, the column is set to the appropriate “zero” value for the type. See Section 10.3, “Date and Time Types”.
These are the same values that result if you assign an empty
string explicitly to a string, numeric, or date or time type
explicitly in an INSERT
or
UPDATE
statement.
TIMESTAMP
columns are set to the current date
and time only if there is a NULL
value for
the column (that is, \N
) and the column is
not declared to allow NULL
values, or if the
TIMESTAMP
column's default value is the
current timestamp and it is omitted from the field list when a
field list is specified.
LOAD DATA INFILE
regards all input as
strings, so you cannot use numeric values for
ENUM
or SET
columns the
way you can with INSERT
statements. All
ENUM
and SET
values must
be specified as strings.
BIT
values cannot be loaded using binary
notation (for example, b'011010'
). To work
around this, specify the values as regular integers and use the
SET
clause to convert them so that MySQL
performs a numeric type conversion and loads them into the
BIT
column properly:
shell>cat /tmp/bit_test.txt
2 127 shell>mysql test
mysql>LOAD DATA INFILE '/tmp/bit_test.txt'
->INTO TABLE bit_test (@var1) SET b= CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec) Records: 2 Deleted: 0 Skipped: 0 Warnings: 0 mysql>SELECT BIN(b+0) FROM bit_test;
+----------+ | bin(b+0) | +----------+ | 10 | | 1111111 | +----------+ 2 rows in set (0.00 sec)
When the LOAD DATA INFILE
statement finishes,
it returns an information string in the following format:
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0
If you are using the C API, you can get information about the
statement by calling the
mysql_info()
function. See
Section 29.2.3.35, “mysql_info()
”.
Warnings occur under the same circumstances as when values are
inserted via the INSERT
statement (see
Section 12.2.4, “INSERT
Syntax”), except that LOAD DATA
INFILE
also generates warnings when there are too few
or too many fields in the input row. The warnings are not stored
anywhere; the number of warnings can be used only as an
indication of whether everything went well.
You can use SHOW WARNINGS
to get a list of
the first max_error_count
warnings as
information about what went wrong. See
Section 12.5.4.32, “SHOW WARNINGS
Syntax”.
REPLACE [LOW_PRIORITY | DELAYED] [INTO]tbl_name
[(col_name
,...)] {VALUES | VALUE} ({expr
| DEFAULT},...),(...),...
Or:
REPLACE [LOW_PRIORITY | DELAYED] [INTO]tbl_name
SETcol_name
={expr
| DEFAULT}, ...
Or:
REPLACE [LOW_PRIORITY | DELAYED] [INTO]tbl_name
[(col_name
,...)] SELECT ...
REPLACE
works exactly like
INSERT
, except that if an old row in the
table has the same value as a new row for a PRIMARY
KEY
or a UNIQUE
index, the old row
is deleted before the new row is inserted. See
Section 12.2.4, “INSERT
Syntax”.
REPLACE
is a MySQL extension to the SQL
standard. It either inserts, or deletes and
inserts. For another MySQL extension to standard SQL —
that either inserts or updates — see
Section 12.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE
Syntax”.
Note that unless the table has a PRIMARY KEY
or UNIQUE
index, using a
REPLACE
statement makes no sense. It becomes
equivalent to INSERT
, because there is no
index to be used to determine whether a new row duplicates
another.
Values for all columns are taken from the values specified in
the REPLACE
statement. Any missing columns
are set to their default values, just as happens for
INSERT
. You cannot refer to values from the
current row and use them in the new row. If you use an
assignment such as SET
, the reference
to the column name on the right hand side is treated as
col_name
=
col_name
+ 1DEFAULT(
,
so the assignment is equivalent to col_name
)SET
.
col_name
=
DEFAULT(col_name
) + 1
To use REPLACE
, you must have both the
INSERT
and DELETE
privileges for the table.
The REPLACE
statement returns a count to
indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row
REPLACE
, a row was inserted and no rows were
deleted. If the count is greater than 1, one or more old rows
were deleted before the new row was inserted. It is possible for
a single row to replace more than one old row if the table
contains multiple unique indexes and the new row duplicates
values for different old rows in different unique indexes.
The affected-rows count makes it easy to determine whether
REPLACE
only added a row or whether it also
replaced any rows: Check whether the count is 1 (added) or
greater (replaced).
If you are using the C API, the affected-rows count can be
obtained using the
mysql_affected_rows()
function.
Currently, you cannot replace into a table and select from the same table in a subquery.
MySQL uses the following algorithm for
REPLACE
(and LOAD DATA ...
REPLACE
):
Try to insert the new row into the table
While the insertion fails because a duplicate-key error occurs for a primary key or unique index:
Delete from the table the conflicting row that has the duplicate key value
Try again to insert the new row into the table
SELECT [ALL | DISTINCT | DISTINCTROW ] [HIGH_PRIORITY] [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT] [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]select_expr
, ... [FROMtable_references
[WHEREwhere_condition
] [GROUP BY {col_name
|expr
|position
} [ASC | DESC], ... [WITH ROLLUP]] [HAVINGwhere_condition
] [ORDER BY {col_name
|expr
|position
} [ASC | DESC], ...] [LIMIT {[offset
,]row_count
|row_count
OFFSEToffset
}] [PROCEDUREprocedure_name
(argument_list
)] [INTO OUTFILE 'file_name
'export_options
| INTO DUMPFILE 'file_name
' | INTOvar_name
[,var_name
]] [FOR UPDATE | LOCK IN SHARE MODE]]
SELECT
is used to retrieve rows selected from
one or more tables, and can include UNION
statements and subqueries. See Section 12.2.7.3, “UNION
Syntax”, and
Section 12.2.8, “Subquery Syntax”.
The most commonly used clauses of SELECT
statements are these:
Each select_expr
indicates a
column that you want to retrieve. There must be at least one
select_expr
.
table_references
indicates the
table or tables from which to retrieve rows. Its syntax is
described in Section 12.2.7.1, “JOIN
Syntax”.
The WHERE
clause, if given, indicates the
condition or conditions that rows must satisfy to be
selected. where_condition
is an
expression that evaluates to true for each row to be
selected. The statement selects all rows if there is no
WHERE
clause.
In the WHERE
clause, you can use any of
the functions and operators that MySQL supports, except for
aggregate (summary) functions. See
Chapter 11, Functions and Operators.
SELECT
can also be used to retrieve rows
computed without reference to any table.
For example:
mysql> SELECT 1 + 1;
-> 2
You are allowed to specify DUAL
as a dummy
table name in situations where no tables are referenced:
mysql> SELECT 1 + 1 FROM DUAL;
-> 2
DUAL
is purely for the convenience of people
who require that all SELECT
statements should
have FROM
and possibly other clauses. MySQL
may ignore the clauses. MySQL does not require FROM
DUAL
if no tables are referenced.
In general, clauses used must be given in exactly the order
shown in the syntax description. For example, a
HAVING
clause must come after any
GROUP BY
clause and before any ORDER
BY
clause. The exception is that the
INTO
clause can appear either as shown in the
syntax description or immediately following the
select_expr
list.
A select_expr
can be given an
alias using AS
. The alias
is used as the expression's column name and can be used in
alias_name
GROUP BY
, ORDER BY
, or
HAVING
clauses. For example:
SELECT CONCAT(last_name,', ',first_name) AS full_name FROM mytable ORDER BY full_name;
The AS
keyword is optional when aliasing
a select_expr
. The preceding
example could have been written like this:
SELECT CONCAT(last_name,', ',first_name) full_name FROM mytable ORDER BY full_name;
However, because the AS
is optional, a
subtle problem can occur if you forget the comma between two
select_expr
expressions: MySQL
interprets the second as an alias name. For example, in the
following statement, columnb
is treated
as an alias name:
SELECT columna columnb FROM mytable;
For this reason, it is good practice to be in the habit of
using AS
explicitly when specifying
column aliases.
It is not allowable to refer to a column alias in a
WHERE
clause, because the column value
might not yet be determined when the
WHERE
clause is executed. See
Section B.1.5.4, “Problems with Column Aliases”.
The FROM
clause
indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join.
For information on join syntax, see Section 12.2.7.1, “table_references
JOIN
Syntax”.
For each table specified, you can optionally specify an
alias.
tbl_name
[[AS]alias
] [index_hint
]
The use of index hints provides the optimizer with information about how to choose indexes during query processing. For a description of the syntax for specifying these hints, see Section 12.2.7.2, “Index Hint Syntax”.
You can use SET
max_seeks_for_key=
as an alternative way to force MySQL to prefer key scans
instead of table scans. See
Section 5.1.3, “System Variables”.
value
You can refer to a table within the default database as
tbl_name
, or as
db_name
.tbl_name
to specify a database explicitly. You can refer to a column
as col_name
,
tbl_name
.col_name
,
or
db_name
.tbl_name
.col_name
.
You need not specify a tbl_name
or
db_name
.tbl_name
prefix for a column reference unless the reference would be
ambiguous. See Section 8.2.1, “Identifier Qualifiers”, for
examples of ambiguity that require the more explicit column
reference forms.
A table reference can be aliased using
or
tbl_name
AS
alias_name
tbl_name alias_name
:
SELECT t1.name, t2.salary FROM employee AS t1, info AS t2 WHERE t1.name = t2.name; SELECT t1.name, t2.salary FROM employee t1, info t2 WHERE t1.name = t2.name;
Columns selected for output can be referred to in
ORDER BY
and GROUP BY
clauses using column names, column aliases, or column
positions. Column positions are integers and begin with 1:
SELECT college, region, seed FROM tournament ORDER BY region, seed; SELECT college, region AS r, seed AS s FROM tournament ORDER BY r, s; SELECT college, region, seed FROM tournament ORDER BY 2, 3;
To sort in reverse order, add the DESC
(descending) keyword to the name of the column in the
ORDER BY
clause that you are sorting by.
The default is ascending order; this can be specified
explicitly using the ASC
keyword.
If ORDER BY
occurs within a subquery and
also is applied in the outer query, the outermost
ORDER BY
takes precedence. For example,
results for the following statement are sorted in descending
order, not ascending order:
(SELECT ... ORDER BY a) ORDER BY a DESC;
Use of column positions is deprecated because the syntax has been removed from the SQL standard.
If you use GROUP BY
, output rows are
sorted according to the GROUP BY
columns
as if you had an ORDER BY
for the same
columns. To avoid the overhead of sorting that
GROUP BY
produces, add ORDER BY
NULL
:
SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;
MySQL extends the GROUP BY
clause so that
you can also specify ASC
and
DESC
after columns named in the clause:
SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;
MySQL extends the use of GROUP BY
to
allow selecting fields that are not mentioned in the
GROUP BY
clause. If you are not getting
the results that you expect from your query, please read the
description of GROUP BY
found in
Section 11.12, “Functions and Modifiers for Use with GROUP BY
Clauses”.
GROUP BY
allows a WITH
ROLLUP
modifier. See
Section 11.12.2, “GROUP BY
Modifiers”.
The HAVING
clause is applied nearly last,
just before items are sent to the client, with no
optimization. (LIMIT
is applied after
HAVING
.)
The SQL standard requires that HAVING
must reference only columns in the GROUP
BY
clause or columns used in aggregate functions.
However, MySQL supports an extension to this behavior, and
allows HAVING
to refer to columns in the
SELECT
list and columns in outer
subqueries as well.
If the HAVING
clause refers to a column
that is ambiguous, a warning occurs. In the following
statement, col2
is ambiguous because it
is used as both an alias and a column name:
SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;
Preference is given to standard SQL behavior, so if a
HAVING
column name is used both in
GROUP BY
and as an aliased column in the
output column list, preference is given to the column in the
GROUP BY
column.
Do not use HAVING
for items that should
be in the WHERE
clause. For example, do
not write the following:
SELECTcol_name
FROMtbl_name
HAVINGcol_name
> 0;
Write this instead:
SELECTcol_name
FROMtbl_name
WHEREcol_name
> 0;
The HAVING
clause can refer to aggregate
functions, which the WHERE
clause cannot:
SELECT user, MAX(salary) FROM users GROUP BY user HAVING MAX(salary) > 10;
(This did not work in some older versions of MySQL.)
MySQL allows duplicate column names. That is, there can be
more than one select_expr
with
the same name. This is an extension to standard SQL. Because
MySQL also allows GROUP BY
and
HAVING
to refer to
select_expr
values, this can
result in an ambiguity:
SELECT 12 AS a, a FROM t GROUP BY a;
In that statement, both columns have the name
a
. To ensure that the correct column is
used for grouping, use different names for each
select_expr
.
MySQL resolves unqualified column or alias references in
ORDER BY
clauses by searching in the
select_expr
values, then in the
columns of the tables in the FROM
clause.
For GROUP BY
or HAVING
clauses, it searches the FROM
clause
before searching in the
select_expr
values. (For
GROUP BY
and HAVING
,
this differs from the pre-MySQL 5.0 behavior that used the
same rules as for ORDER BY
.)
The LIMIT
clause can be used to constrain
the number of rows returned by the SELECT
statement. LIMIT
takes one or two numeric
arguments, which must both be non-negative integer constants
(except when using prepared statements).
With two arguments, the first argument specifies the offset of the first row to return, and the second specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):
SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15
To retrieve all rows from a certain offset up to the end of the result set, you can use some large number for the second parameter. This statement retrieves all rows from the 96th row to the last:
SELECT * FROM tbl LIMIT 95,18446744073709551615;
With one argument, the value specifies the number of rows to return from the beginning of the result set:
SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows
In other words, LIMIT
is equivalent
to row_count
LIMIT 0,
.
row_count
For prepared statements, you can use placeholders. The
following statements will return one row from the
tbl
table:
SET @a=1; PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?'; EXECUTE STMT USING @a;
The following statements will return the second to sixth row
from the tbl
table:
SET @skip=1; SET @numrows=5; PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?'; EXECUTE STMT USING @skip, @numrows;
For compatibility with PostgreSQL, MySQL also supports the
LIMIT
syntax.
row_count
OFFSET
offset
If LIMIT
occurs within a subquery and
also is applied in the outer query, the outermost
LIMIT
takes precedence. For example, the
following statement produces two rows, not one:
(SELECT ... LIMIT 1) LIMIT 2;
A PROCEDURE
clause names a procedure that
should process the data in the result set. For an example,
see Section 31.4.1, “PROCEDURE ANALYSE
”.
The SELECT ... INTO OUTFILE
'
form of
file_name
'SELECT
writes the selected rows to a
file. The file is created on the server host, so you must
have the FILE
privilege to use this
syntax. file_name
cannot be an
existing file, which among other things prevents files such
as /etc/passwd
and database tables from
being destroyed. As of MySQL 5.1.6, the
character_set_filesystem
system variable
controls the interpretation of the filename.
The SELECT ... INTO OUTFILE
statement is
intended primarily to let you very quickly dump a table to a
text file on the server machine. If you want to create the
resulting file on some client host other than the server
host, you cannot use SELECT ... INTO
OUTFILE
. In that case, you should instead use a
command such as mysql -e "SELECT ..." >
to generate
the file on the client host.
file_name
SELECT ... INTO OUTFILE
is the complement
of LOAD DATA INFILE
; the syntax for the
export_options
part of the
statement consists of the same FIELDS
and
LINES
clauses that are used with the
LOAD DATA INFILE
statement. See
Section 12.2.5, “LOAD DATA INFILE
Syntax”.
FIELDS ESCAPED BY
controls how to write
special characters. If the FIELDS ESCAPED
BY
character is not empty, it is used as a prefix
that precedes following characters on output:
The FIELDS ESCAPED BY
character
The FIELDS [OPTIONALLY] ENCLOSED BY
character
The first character of the FIELDS TERMINATED
BY
and LINES TERMINATED BY
values
ASCII NUL
(the zero-valued byte; what
is actually written following the escape character is
ASCII “0
”, not a
zero-valued byte)
The FIELDS TERMINATED BY
,
ENCLOSED BY
, ESCAPED
BY
, or LINES TERMINATED BY
characters must be escaped so that you
can read the file back in reliably. ASCII
NUL
is escaped to make it easier to view
with some pagers.
The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.
If the FIELDS ESCAPED BY
character is
empty, no characters are escaped and NULL
is output as NULL
, not
\N
. It is probably not a good idea to
specify an empty escape character, particularly if field
values in your data contain any of the characters in the
list just given.
Here is an example that produces a file in the comma-separated values (CSV) format used by many programs:
SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt' FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES TERMINATED BY '\n' FROM test_table;
If you use INTO DUMPFILE
instead of
INTO OUTFILE
, MySQL writes only one row
into the file, without any column or line termination and
without performing any escape processing. This is useful if
you want to store a BLOB
value in a file.
The INTO
clause can name a list of one or
more variables, which can be user-defined variables, or
parameters or local variables within a stored function or
procedure body (see
Section 23.2.7.3, “SELECT ... INTO
Statement”). The selected
values are assigned to the variables. The number of
variables must match the number of columns.
Any file created by INTO OUTFILE
or
INTO DUMPFILE
is writable by all users
on the server host. The reason for this is that the MySQL
server cannot create a file that is owned by anyone other
than the user under whose account it is running. (You
should never run
mysqld as root
for
this and other reasons.) The file thus must be
world-writable so that you can manipulate its contents.
The SELECT
syntax description at the
beginning this section shows the INTO
clause near the end of the statement. It is also possible to
use INTO
immediately following the
select_expr
list.
An INTO
clause should not be used in a
nested SELECT
because such a
SELECT
must return its result to the
outer context.
If you use FOR UPDATE
with a storage
engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current
transaction. Using LOCK IN SHARE MODE
sets a shared lock that allows other transactions to read
the examined rows but not to update or delete them. See
Section 13.5.10.5, “SELECT ... FOR UPDATE
and SELECT ... LOCK IN
SHARE MODE
Locking Reads”.
Following the SELECT
keyword, you can use a
number of options that affect the operation of the statement.
The ALL
, DISTINCT
, and
DISTINCTROW
options specify whether duplicate
rows should be returned. If none of these options are given, the
default is ALL
(all matching rows are
returned). DISTINCT
and
DISTINCTROW
are synonyms and specify removal
of duplicate rows from the result set.
HIGH_PRIORITY
,
STRAIGHT_JOIN
, and options beginning with
SQL_
are MySQL extensions to standard SQL.
HIGH_PRIORITY
gives the
SELECT
higher priority than a statement
that updates a table. You should use this only for queries
that are very fast and must be done at once. A
SELECT HIGH_PRIORITY
query that is issued
while the table is locked for reading runs even if there is
an update statement waiting for the table to be free. This
affects only storage engines that use only table-level
locking (MyISAM
,
MEMORY
, MERGE
).
HIGH_PRIORITY
cannot be used with
SELECT
statements that are part of a
UNION
.
STRAIGHT_JOIN
forces the optimizer to
join the tables in the order in which they are listed in the
FROM
clause. You can use this to speed up
a query if the optimizer joins the tables in non-optimal
order. See Section 12.3.2, “EXPLAIN
Syntax”.
STRAIGHT_JOIN
also can be used in the
table_references
list. See
Section 12.2.7.1, “JOIN
Syntax”.
SQL_BIG_RESULT
can be used with
GROUP BY
or DISTINCT
to tell the optimizer that the result set has many rows. In
this case, MySQL directly uses disk-based temporary tables
if needed, and prefers sorting to using a temporary table
with a key on the GROUP BY
elements.
SQL_BUFFER_RESULT
forces the result to be
put into a temporary table. This helps MySQL free the table
locks early and helps in cases where it takes a long time to
send the result set to the client.
SQL_SMALL_RESULT
can be used with
GROUP BY
or DISTINCT
to tell the optimizer that the result set is small. In this
case, MySQL uses fast temporary tables to store the
resulting table instead of using sorting. This should not
normally be needed.
SQL_CALC_FOUND_ROWS
tells MySQL to
calculate how many rows there would be in the result set,
disregarding any LIMIT
clause. The number
of rows can then be retrieved with SELECT
FOUND_ROWS()
. See
Section 11.11.3, “Information Functions”.
The SQL_CACHE
and
SQL_NO_CACHE
options affect caching of
query results in the query cache (see
Section 7.5.4, “The MySQL Query Cache”). SQL_CACHE
tells MySQL to store the result in the query cache if it is
cacheable and the value of the
query_cache_type
system variable is
2
or DEMAND
.
SQL_NO_CACHE
tells MySQL not to store the
result in the query cache. For a query that uses
UNION
, subqueries, or views, the
following rules apply:
SQL_NO_CACHE
applies if it appears in
any SELECT
in the query.
For a cacheable query, SQL_CACHE
applies if it appears in the first
SELECT
of the query, or in the first
SELECT
of a view referred to by the
query.
MySQL supports the following JOIN
syntaxes
for the table_references
part of
SELECT
statements and multiple-table
DELETE
and UPDATE
statements:
table_references:
table_reference
[,table_reference
] ...table_reference
:table_factor
|join_table
table_factor
:tbl_name
[[AS]alias
] [index_hint_list
] |table_subquery
[AS]alias
| (table_references
) | { OJtable_reference
LEFT OUTER JOINtable_reference
ONconditional_expr
}join_table
:table_reference
[INNER | CROSS] JOINtable_factor
[join_condition
] |table_reference
STRAIGHT_JOINtable_factor
|table_reference
STRAIGHT_JOINtable_factor
ONconditional_expr
|table_reference
{LEFT|RIGHT} [OUTER] JOINtable_reference
join_condition
|table_reference
NATURAL [{LEFT|RIGHT} [OUTER]] JOINtable_factor
join_condition
: ONconditional_expr
| USING (column_list
)index_hint_list
:index_hint
[,index_hint
] ...index_hint
: USE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list
]) | IGNORE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list
) | FORCE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list
)index_list
:index_name
[,index_name
] ...
A table reference is also known as a join expression.
The syntax of table_factor
is
extended in comparison with the SQL Standard. The latter
accepts only table_reference
, not a
list of them inside a pair of parentheses.
This is a conservative extension if we consider each comma in
a list of table_reference
items as
equivalent to an inner join. For example:
SELECT * FROM t1 LEFT JOIN (t2, t3, t4) ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
is equivalent to:
SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4) ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
In MySQL, CROSS JOIN
is a syntactic
equivalent to INNER JOIN
(they can replace
each other). In standard SQL, they are not equivalent.
INNER JOIN
is used with an
ON
clause, CROSS JOIN
is
used otherwise.
In general, parentheses can be ignored in join expressions containing only inner join operations. MySQL also supports nested joins (see Section 7.2.10, “Nested Join Optimization”).
Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more information, see Section 12.2.7.2, “Index Hint Syntax”.
The following list describes general factors to take into account when writing joins.
A table reference can be aliased using
or
tbl_name
AS
alias_name
tbl_name alias_name
:
SELECT t1.name, t2.salary FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name; SELECT t1.name, t2.salary FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;
A table_subquery
is also known
as a subquery in the FROM
clause. Such
subqueries must include an alias to
give the subquery result a table name. A trivial example
follows; see also Section 12.2.8.8, “Subqueries in the FROM
clause”.
SELECT * FROM (SELECT 1, 2, 3) AS t1;
INNER JOIN
and ,
(comma) are semantically equivalent in the absence of a
join condition: both produce a Cartesian product between
the specified tables (that is, each and every row in the
first table is joined to each and every row in the second
table).
However, the precedence of the comma operator is less than
of INNER JOIN
, CROSS
JOIN
, LEFT JOIN
, and so on.
If you mix comma joins with the other join types when
there is a join condition, an error of the form
Unknown column
'
may occur. Information about dealing
with this problem is given later in this section.
col_name
' in 'on
clause'
The conditional_expr
used with
ON
is any conditional expression of the
form that can be used in a WHERE
clause. Generally, you should use the
ON
clause for conditions that specify
how to join tables, and the WHERE
clause to restrict which rows you want in the result set.
If there is no matching row for the right table in the
ON
or USING
part in
a LEFT JOIN
, a row with all columns set
to NULL
is used for the right table.
You can use this fact to find rows in a table that have no
counterpart in another table:
SELECT left_tbl.* FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id WHERE right_tbl.id IS NULL;
This example finds all rows in left_tbl
with an id
value that is not present in
right_tbl
(that is, all rows in
left_tbl
with no corresponding row in
right_tbl
). This assumes that
right_tbl.id
is declared NOT
NULL
. See
Section 7.2.9, “LEFT JOIN
and RIGHT JOIN
Optimization”.
The
USING(
clause names a list of columns that must exist in both
tables. If tables column_list
)a
and
b
both contain columns
c1
, c2
, and
c3
, the following join compares
corresponding columns from the two tables:
a LEFT JOIN b USING (c1,c2,c3)
The NATURAL [LEFT] JOIN
of two tables
is defined to be semantically equivalent to an
INNER JOIN
or a LEFT
JOIN
with a USING
clause that
names all columns that exist in both tables.
RIGHT JOIN
works analogously to
LEFT JOIN
. To keep code portable across
databases, it is recommended that you use LEFT
JOIN
instead of RIGHT JOIN
.
The { OJ ... LEFT OUTER JOIN ...}
syntax shown in the join syntax description exists only
for compatibility with ODBC. The curly braces in the
syntax should be written literally; they are not
metasyntax as used elsewhere in syntax descriptions.
As of MySQL 5.1.24, you can use other types of joins
within { OJ ... }
, such as
INNER JOIN
or RIGHT OUTER
JOIN
. This helps with compatibility with some
third-party applications, but is not official ODBC syntax.
STRAIGHT_JOIN
is similar to
JOIN
, except that the left table is
always read before the right table. This can be used for
those (few) cases for which the join optimizer puts the
tables in the wrong order.
Some join examples:
SELECT * FROM table1, table2; SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id; SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id; SELECT * FROM table1 LEFT JOIN table2 USING (id); SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id LEFT JOIN table3 ON table2.id=table3.id;
Join Processing Changes in MySQL 5.0.12
Natural joins and joins with USING
,
including outer join variants, are processed according to
the SQL:2003 standard. The goal was to align the syntax and
semantics of MySQL with respect to NATURAL
JOIN
and JOIN ... USING
according to SQL:2003. However, these changes in join
processing can result in different output columns for some
joins. Also, some queries that appeared to work correctly in
older versions (prior to 5.0.12) must be rewritten to comply
with the standard.
These changes have five main aspects:
The way that MySQL determines the result columns of
NATURAL
or USING
join operations (and thus the result of the entire
FROM
clause).
Expansion of SELECT *
and
SELECT
into a
list of selected columns.
tbl_name
.*
Resolution of column names in NATURAL
or USING
joins.
Transformation of NATURAL
or
USING
joins into JOIN ...
ON
.
Resolution of column names in the ON
condition of a JOIN ... ON
.
The following list provides more detail about several effects of current join processing versus join processing in older versions. The term “previously” means “prior to MySQL 5.0.12.”
The columns of a NATURAL
join or a
USING
join may be different from
previously. Specifically, redundant output columns no
longer appear, and the order of columns for
SELECT *
expansion may be different
from before.
Consider this set of statements:
CREATE TABLE t1 (i INT, j INT); CREATE TABLE t2 (k INT, j INT); INSERT INTO t1 VALUES(1,1); INSERT INTO t2 VALUES(1,1); SELECT * FROM t1 NATURAL JOIN t2; SELECT * FROM t1 JOIN t2 USING (j);
Previously, the statements produced this output:
+------+------+------+------+ | i | j | k | j | +------+------+------+------+ | 1 | 1 | 1 | 1 | +------+------+------+------+ +------+------+------+------+ | i | j | k | j | +------+------+------+------+ | 1 | 1 | 1 | 1 | +------+------+------+------+
In the first SELECT
statement, column
j
appears in both tables and thus
becomes a join column, so, according to standard SQL, it
should appear only once in the output, not twice.
Similarly, in the second SELECT statement, column
j
is named in the
USING
clause and should appear only
once in the output, not twice. But in both cases, the
redundant column is not eliminated. Also, the order of the
columns is not correct according to standard SQL.
Now the statements produce this output:
+------+------+------+ | j | i | k | +------+------+------+ | 1 | 1 | 1 | +------+------+------+ +------+------+------+ | j | i | k | +------+------+------+ | 1 | 1 | 1 | +------+------+------+
The redundant column is eliminated and the column order is correct according to standard SQL:
First, coalesced common columns of the two joined tables, in the order in which they occur in the first table
Second, columns unique to the first table, in order in which they occur in that table
Third, columns unique to the second table, in order in which they occur in that table
The single result column that replaces two common columns
is defined via the coalesce operation. That is, for two
t1.a
and t2.a
the
resulting single join column a
is
defined as a = COALESCE(t1.a, t2.a)
,
where:
COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)
If the join operation is any other join, the result columns of the join consists of the concatenation of all columns of the joined tables. This is the same as previously.
A consequence of the definition of coalesced columns is
that, for outer joins, the coalesced column contains the
value of the non-NULL
column if one of
the two columns is always NULL
. If
neither or both columns are NULL
, both
common columns have the same value, so it doesn't matter
which one is chosen as the value of the coalesced column.
A simple way to interpret this is to consider that a
coalesced column of an outer join is represented by the
common column of the inner table of a
JOIN
. Suppose that the tables
t1(a,b)
and t2(a,c)
have the following contents:
t1 t2 ---- ---- 1 x 2 z 2 y 3 w
Then:
mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+
Here column a
contains the values of
t1.a
.
mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+
Here column a
contains the values of
t2.a
.
Compare these results to the otherwise equivalent queries
with JOIN ... ON
:
mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+
mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+
Previously, a USING
clause could be
rewritten as an ON
clause that compares
corresponding columns. For example, the following two
clauses were semantically identical:
a LEFT JOIN b USING (c1,c2,c3) a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3
Now the two clauses no longer are quite the same:
With respect to determining which rows satisfy the join condition, both joins remain semantically identical.
With respect to determining which columns to display
for SELECT *
expansion, the two
joins are not semantically identical. The
USING
join selects the coalesced
value of corresponding columns, whereas the
ON
join selects all columns from
all tables. For the preceding USING
join, SELECT *
selects these
values:
COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)
For the ON
join, SELECT
*
selects these values:
a.c1, a.c2, a.c3, b.c1, b.c2, b.c3
With an inner join,
COALESCE(a.c1,b.c1)
is
the same as either a.c1
or
b.c1
because both columns will have
the same value. With an outer join (such as
LEFT JOIN
), one of the two columns
can be NULL
. That column will be
omitted from the result.
The evaluation of multi-way natural joins differs in a
very important way that affects the result of
NATURAL
or USING
joins and that can require query rewriting. Suppose that
you have three tables t1(a,b)
,
t2(c,b)
, and t3(a,c)
that each have one row: t1(1,2)
,
t2(10,2)
, and
t3(7,10)
. Suppose also that you have
this NATURAL JOIN
on the three tables:
SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;
Previously, the left operand of the second join was
considered to be t2
, whereas it should
be the nested join (t1 NATURAL JOIN
t2)
. As a result, the columns of
t3
are checked for common columns only
in t2
, and, if t3
has common columns with t1
, these
columns are not used as equi-join columns. Thus,
previously, the preceding query was transformed to the
following equi-join:
SELECT ... FROM t1, t2, t3 WHERE t1.b = t2.b AND t2.c = t3.c;
That join is missing one more equi-join predicate
(t1.a = t3.a)
. As a result, it produces
one row, not the empty result that it should. The correct
equivalent query is this:
SELECT ... FROM t1, t2, t3 WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;
If you require the same query result in current versions of MySQL as in older versions, rewrite the natural join as the first equi-join.
Previously, the comma operator (,
) and
JOIN
both had the same precedence, so
the join expression t1, t2 JOIN t3
was
interpreted as ((t1, t2) JOIN t3)
. Now
JOIN
has higher precedence, so the
expression is interpreted as (t1, (t2 JOIN
t3))
. This change affects statements that use an
ON
clause, because that clause can
refer only to columns in the operands of the join, and the
change in precedence changes interpretation of what those
operands are.
Example:
CREATE TABLE t1 (i1 INT, j1 INT); CREATE TABLE t2 (i2 INT, j2 INT); CREATE TABLE t3 (i3 INT, j3 INT); INSERT INTO t1 VALUES(1,1); INSERT INTO t2 VALUES(1,1); INSERT INTO t3 VALUES(1,1); SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);
SELECT left_tbl.* FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id } WHERE right_tbl.id IS NULL;
Previously, the SELECT
was legal due to
the implicit grouping of t1,t2
as
(t1,t2)
. Now the
JOIN
takes precedence, so the operands
for the ON
clause are
t2
and t3
. Because
t1.i1
is not a column in either of the
operands, the result is an Unknown column 't1.i1'
in 'on clause'
error. To allow the join to be
processed, group the first two tables explicitly with
parentheses so that the operands for the
ON
clause are
(t1,t2)
and t3
:
SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);
Alternatively, avoid the use of the comma operator and use
JOIN
instead:
SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);
This change also applies to statements that mix the comma
operator with INNER JOIN
,
CROSS JOIN
, LEFT
JOIN
, and RIGHT JOIN
, all of
which now have higher precedence than the comma operator.
Previously, the ON
clause could refer
to columns in tables named to its right. Now an
ON
clause can refer only to its
operands.
Example:
CREATE TABLE t1 (i1 INT); CREATE TABLE t2 (i2 INT); CREATE TABLE t3 (i3 INT); SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;
Previously, the SELECT
statement was
legal. Now the statement fails with an Unknown
column 'i3' in 'on clause'
error because
i3
is a column in
t3
, which is not an operand of the
ON
clause. The statement should be
rewritten as follows:
SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);
Resolution of column names in NATURAL
or USING
joins is different than
previously. For column names that are outside the
FROM
clause, MySQL now handles a
superset of the queries compared to previously. That is,
in cases when MySQL formerly issued an error that some
column is ambiguous, the query now is handled correctly.
This is due to the fact that MySQL now treats the common
columns of NATURAL
or
USING
joins as a single column, so when
a query refers to such columns, the query compiler does
not consider them as ambiguous.
Example:
SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;
Previously, this query would produce an error
ERROR 1052 (23000): Column 'b' in where clause is
ambiguous
. Now the query produces the correct
result:
+------+------+------+ | b | c | y | +------+------+------+ | 4 | 2 | 3 | +------+------+------+
One extension of MySQL compared to the SQL:2003 standard
is that MySQL allows you to qualify the common (coalesced)
columns of NATURAL
or
USING
joins (just as previously), while
the standard disallows that.
You can provide hints to give the optimizer information about
how to choose indexes during query processing.
Section 12.2.7.1, “JOIN
Syntax”, describes the general syntax for
specifying tables in a SELECT
statement.
The syntax for an individual table, including that for index
hints, looks like this:
tbl_name
[[AS]alias
] [index_hint_list
]index_hint_list
:index_hint
[,index_hint
] ...index_hint
: USE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] ([index_list
]) | IGNORE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list
) | FORCE {INDEX|KEY} [{FOR {JOIN|ORDER BY|GROUP BY}] (index_list
)index_list
:index_name
[,index_name
] ...
By specifying USE INDEX
(
, you can
tell MySQL to use only one of the named indexes to find rows
in the table. The alternative syntax index_list
)IGNORE INDEX
(
can be used
to tell MySQL to not use some particular index or indexes.
These hints are useful if index_list
)EXPLAIN
shows
that MySQL is using the wrong index from the list of possible
indexes.
You can also use FORCE INDEX
, which acts
like USE INDEX
(
but with the
addition that a table scan is assumed to be
very expensive. In other words, a table
scan is used only if there is no way to use one of the given
indexes to find rows in the table.
index_list
)
Each hint requires the names of indexes,
not the names of columns. The name of a PRIMARY
KEY
is PRIMARY
. To see the index
names for a table, use SHOW INDEX
.
An index_name
value need not be a
full index name. It can be an unambiguous prefix of an index
name. If a prefix is given that is ambiguous, an error occurs.
Index hints do not work for FULLTEXT
indexes.
Prior to MySQL 5.1.17, USE INDEX
,
IGNORE INDEX
, and FORCE
INDEX
affect only which indexes are used when MySQL
decides how to find rows in the table and how to process
joins. They do not affect whether an index is used when
resolving an ORDER BY
or GROUP
BY
clause.
Examples:
SELECT * FROM table1 USE INDEX (col1_index,col2_index) WHERE col1=1 AND col2=2 AND col3=3; SELECT * FROM table1 IGNORE INDEX (col3_index) WHERE col1=1 AND col2=2 AND col3=3;
As of MySQL 5.1.17, the syntax for index hints is extended in the following ways:
It is syntactically valid to specify an empty
index_list
for USE
INDEX
, which means “use no
indexes.” Specifying an empty
index_list
for FORCE
INDEX
or IGNORE INDEX
is a
syntax error.
You can specify the scope of a index hint by adding a
FOR
clause to the hint. This provides
more fine-grained control over the optimizer's selection
of an execution plan for various phases of query
processing. To affect only the indexes used when MySQL
decides how to find rows in the table and how to process
joins, use FOR JOIN
. To influence index
usage for sorting or grouping rows, use FOR ORDER
BY
or FOR GROUP BY
. (However,
if there is a covering index for the table and it is used
to access the table, the optimizer will ignore
IGNORE INDEX FOR {ORDER BY|GROUP BY}
hints that disable that index.)
You can specify multiple index hints:
SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;
It is not a error to name the same index in several hints (even within the same hint):
SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);
However, it is an error to mix USE
INDEX
and FORCE INDEX
for the
same table:
SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);
The default scope of index hints also is changed as of MySQL
5.1.17. Formerly, index hints applied only to how indexes are
used for retrieval of records and not during resolution of
ORDER BY
or GROUP BY
clauses. As of 5.1.17, if you specify no
FOR
clause for an index hint, the hint by
default applies to all parts of the statement. For example,
this hint:
IGNORE INDEX (i1)
is equivalent to this combination of hints:
IGNORE INDEX FOR JOIN (i1) IGNORE INDEX FOR ORDER BY (i1) IGNORE INDEX FOR GROUP BY (i1)
To cause the server to use the older behavior for hint scope
when no FOR
clause is present (so that
hints apply only to row retrieval), enable the
old
system variable at server startup. Take
care about enabling this variable in a replication setup. With
statement-based binary logging, having different modes for the
master and slaves might lead to replication errors.
When index hints are processed, they are collected in a single
list by type (USE
,
FORCE
, IGNORE
) and by
scope (FOR JOIN
, FOR ORDER
BY
, FOR GROUP BY
). For example:
SELECT * FROM t1 USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);
is equivalent to:
SELECT * FROM t1 USE INDEX (i1,i2) IGNORE INDEX (i2);
The index hints then are applied for each scope in the following order:
{USE|FORCE} INDEX
is applied if
present. (If not, the optimizer-determined set of indexes
is used.)
IGNORE INDEX
is applied over the result
of the previous step. For example:
SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2)
is equivalent to:
SELECT * FROM t1 USE INDEX (i1).
SELECT ... UNION [ALL | DISTINCT] SELECT ... [UNION [ALL | DISTINCT] SELECT ...]
UNION
is used to combine the result from
multiple SELECT
statements into a single
result set.
The column names from the first SELECT
statement are used as the column names for the results
returned. Selected columns listed in corresponding positions
of each SELECT
statement should have the
same data type. (For example, the first column selected by the
first statement should have the same type as the first column
selected by the other statements.)
If the data types of corresponding SELECT
columns do not match, the types and lengths of the columns in
the UNION
result take into account the
values retrieved by all of the SELECT
statements. For example, consider the following:
mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+
(In some earlier versions of MySQL, only the type and length
from the first SELECT
would have been used
and the second row would have been truncated to a length of
1.)
The SELECT
statements are normal select
statements, but with the following restrictions:
Only the last SELECT
statement can use
INTO OUTFILE
. (However, the entire
UNION
result is written to the file.)
HIGH_PRIORITY
cannot be used with
SELECT
statements that are part of a
UNION
. If you specify it for the first
SELECT
, it has no effect. If you
specify it for any subsequent SELECT
statements, a syntax error results.
The default behavior for UNION
is that
duplicate rows are removed from the result. The optional
DISTINCT
keyword has no effect other than
the default because it also specifies duplicate-row removal.
With the optional ALL
keyword,
duplicate-row removal does not occur and the result includes
all matching rows from all the SELECT
statements.
You can mix UNION ALL
and UNION
DISTINCT
in the same query. Mixed
UNION
types are treated such that a
DISTINCT
union overrides any
ALL
union to its left. A
DISTINCT
union can be produced explicitly
by using UNION DISTINCT
or implicitly by
using UNION
with no following
DISTINCT
or ALL
keyword.
To use an ORDER BY
or
LIMIT
clause to sort or limit the entire
UNION
result, parenthesize the individual
SELECT
statements and place the
ORDER BY
or LIMIT
after
the last one. The following example uses both clauses:
(SELECT a FROM t1 WHERE a=10 AND B=1) UNION (SELECT a FROM t2 WHERE a=11 AND B=2) ORDER BY a LIMIT 10;
This kind of ORDER BY
cannot use column
references that include a table name (that is, names in
tbl_name
.col_name
format). Instead, provide a column alias in the first
SELECT
statement and refer to the alias in
the ORDER BY
. (Alternatively, refer to the
column in the ORDER BY
using its column
position. However, use of column positions is deprecated.)
Also, if a column to be sorted is aliased, the ORDER
BY
clause must refer to the
alias, not the column name. The first of the following
statements will work, but the second will fail with an
Unknown column 'a' in 'order clause'
error:
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b; (SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;
To apply ORDER BY
or
LIMIT
to an individual
SELECT
, place the clause inside the
parentheses that enclose the SELECT
:
(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10) UNION (SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);
However, use of ORDER BY
for individual
SELECT
statements implies nothing about the
order in which the rows appear in the final result because
UNION
by default produces an unordered set
of rows. Therefore, the use of ORDER BY
in
this context is typically in conjunction with
LIMIT
, so that it is used to determine the
subset of the selected rows to retrieve for the
SELECT
, even though it does not necessarily
affect the order of those rows in the final
UNION
result. If ORDER
BY
appears without LIMIT
in a
SELECT
, it is optimized away because it
will have no effect anyway.
To cause rows in a UNION
result to consist
of the sets of rows retrieved by each
SELECT
one after the other, select an
additional column in each SELECT
to use as
a sort column and add an ORDER BY
following
the last SELECT
:
(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1) UNION (SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;
To additionally maintain sort order within individual
SELECT
results, add a secondary column to
the ORDER BY
clause:
(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1) UNION (SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;
Use of an additional column also enables you to determine
which SELECT
each row comes from. Extra
columns can provide other identifying information as well,
such as a string that indicates a table name.
ANY
, IN
, and
SOME
ALL
EXISTS
and NOT EXISTS
FROM
clause
A subquery is a SELECT
statement within
another statement.
Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are supported, as well as a few features that are MySQL-specific.
Here is an example of a subquery:
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);
In this example, SELECT * FROM t1 ...
is the
outer query (or outer
statement), and (SELECT column1 FROM
t2)
is the subquery. We say that
the subquery is nested within the outer
query, and in fact it is possible to nest subqueries within
other subqueries, to a considerable depth. A subquery must
always appear within parentheses.
The main advantages of subqueries are:
They allow queries that are structured so that it is possible to isolate each part of a statement.
They provide alternative ways to perform operations that would otherwise require complex joins and unions.
They are, in many people's opinion, more readable than complex joins or unions. Indeed, it was the innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query Language.”
Here is an example statement that shows the major points about subquery syntax as specified by the SQL standard and supported in MySQL:
DELETE FROM t1 WHERE s11 > ANY (SELECT COUNT(*) /* no hint */ FROM t2 WHERE NOT EXISTS (SELECT * FROM t3 WHERE ROW(5*t2.s1,77)= (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM (SELECT * FROM t5) AS t5)));
A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries that return a particular kind of result often can be used only in certain contexts, as described in the following sections.
There are few restrictions on the type of statements in which
subqueries can be used. A subquery can contain any of the
keywords or clauses that an ordinary SELECT
can contain: DISTINCT
, GROUP
BY
, ORDER BY
,
LIMIT
, joins, index hints,
UNION
constructs, comments, functions, and so
on.
One restriction is that a subquery's outer statement must be one
of: SELECT
, INSERT
,
UPDATE
, DELETE
,
SET
, or DO
. Another
restriction is that currently you cannot modify a table and
select from the same table in a subquery. This applies to
statements such as DELETE
,
INSERT
, REPLACE
,
UPDATE
, and (because subqueries can be used
in the SET
clause) LOAD DATA
INFILE
.
A more comprehensive discussion of restrictions on subquery use, including performance issues for certain forms of subquery syntax, is given in Section D.3, “Restrictions on Subqueries”.
In its simplest form, a subquery is a scalar subquery that
returns a single value. A scalar subquery is a simple operand,
and you can use it almost anywhere a single column value or
literal is legal, and you can expect it to have those
characteristics that all operands have: a data type, a length,
an indication whether it can be NULL
, and
so on. For example:
CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL); INSERT INTO t1 VALUES(100, 'abcde'); SELECT (SELECT s2 FROM t1);
The subquery in this SELECT
returns a
single value ('abcde'
) that has a data type
of CHAR
, a length of 5, a character set and
collation equal to the defaults in effect at CREATE
TABLE
time, and an indication that the value in the
column can be NULL
. In fact, almost all
subqueries can be NULL
. If the table used
in the example were empty, the value of the subquery would be
NULL
.
There are a few contexts in which a scalar subquery cannot be
used. If a statement allows only a literal value, you cannot
use a subquery. For example, LIMIT
requires
literal integer arguments, and LOAD DATA
INFILE
requires a literal string filename. You
cannot use subqueries to supply these values.
When you see examples in the following sections that contain
the rather spartan construct (SELECT column1 FROM
t1)
, imagine that your own code contains much more
diverse and complex constructions.
Suppose that we make two tables:
CREATE TABLE t1 (s1 INT); INSERT INTO t1 VALUES (1); CREATE TABLE t2 (s1 INT); INSERT INTO t2 VALUES (2);
Then perform a SELECT
:
SELECT (SELECT s1 FROM t2) FROM t1;
The result is 2
because there is a row in
t2
containing a column
s1
that has a value of
2
.
A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an operand that provides an argument for a function. For example:
SELECT UPPER((SELECT s1 FROM t1)) FROM t2;
The most common use of a subquery is in the form:
non_subquery_operand
comparison_operator
(subquery
)
Where comparison_operator
is one of
these operators:
= > < >= <= <>
For example:
... 'a' = (SELECT column1 FROM t1)
At one time the only legal place for a subquery was on the right side of a comparison, and you might still find some old DBMSs that insist on this.
Here is an example of a common-form subquery comparison that
you cannot do with a join. It finds all the values in table
t1
that are equal to a maximum value in
table t2
:
SELECT column1 FROM t1 WHERE column1 = (SELECT MAX(column2) FROM t2);
Here is another example, which again is impossible with a join
because it involves aggregating for one of the tables. It
finds all rows in table t1
containing a
value that occurs twice in a given column:
SELECT * FROM t1 AS t WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);
For a comparison performed with one of these operators, the
subquery must return a scalar, with the exception that
=
can be used with row subqueries. See
Section 12.2.8.5, “Row Subqueries”.
Syntax:
operand
comparison_operator
ANY (subquery
)operand
IN (subquery
)operand
comparison_operator
SOME (subquery
)
The ANY
keyword, which must follow a
comparison operator, means “return
TRUE
if the comparison is
TRUE
for ANY
of the
values in the column that the subquery returns.” For
example:
SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);
Suppose that there is a row in table t1
containing (10)
. The expression is
TRUE
if table t2
contains (21,14,7)
because there is a value
7
in t2
that is less
than 10
. The expression is
FALSE
if table t2
contains (20,10)
, or if table
t2
is empty. The expression is
unknown if table t2
contains (NULL,NULL,NULL)
.
When used with a subquery, the word IN
is
an alias for = ANY
. Thus, these two
statements are the same:
SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2); SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);
IN
and = ANY
are not
synonyms when used with an expression list.
IN
can take an expression list, but
= ANY
cannot. See
Section 11.2.3, “Comparison Functions and Operators”.
NOT IN
is not an alias for
<> ANY
, but for <>
ALL
. See Section 12.2.8.4, “Subqueries with ALL
”.
The word SOME
is an alias for
ANY
. Thus, these two statements are the
same:
SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2); SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);
Use of the word SOME
is rare, but this
example shows why it might be useful. To most people's ears,
the English phrase “a is not equal to any b”
means “there is no b which is equal to a,” but
that is not what is meant by the SQL syntax. The syntax means
“there is some b to which a is not equal.” Using
<> SOME
instead helps ensure that
everyone understands the true meaning of the query.
Syntax:
operand
comparison_operator
ALL (subquery
)
The word ALL
, which must follow a
comparison operator, means “return
TRUE
if the comparison is
TRUE
for ALL
of the
values in the column that the subquery returns.” For
example:
SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);
Suppose that there is a row in table t1
containing (10)
. The expression is
TRUE
if table t2
contains (-5,0,+5)
because
10
is greater than all three values in
t2
. The expression is
FALSE
if table t2
contains (12,6,NULL,-100)
because there is
a single value 12
in table
t2
that is greater than
10
. The expression is
unknown (that is,
NULL
) if table t2
contains (0,NULL,1)
.
Finally, if table t2
is empty, the result
is TRUE
. So, the following statement is
TRUE
when table t2
is
empty:
SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);
But this statement is NULL
when table
t2
is empty:
SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);
In addition, the following statement is
NULL
when table t2
is
empty:
SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);
In general, tables containing
NULL
values and empty
tables are “edge cases.” When writing
subquery code, always consider whether you have taken those
two possibilities into account.
NOT IN
is an alias for <>
ALL
. Thus, these two statements are the same:
SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2); SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);
The discussion to this point has been of scalar or column subqueries; that is, subqueries that return a single value or a column of values. A row subquery is a subquery variant that returns a single row and can thus return more than one column value. Here are two examples:
SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2); SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);
The queries here are both TRUE
if table
t2
has a row where column1 =
1
and column2 = 2
.
The expressions (1,2)
and
ROW(1,2)
are sometimes called
row constructors. The two are
equivalent. They are legal in other contexts as well. For
example, the following two statements are semantically
equivalent (although the first one cannot be optimized until
MySQL 5.1.12):
SELECT * FROM t1 WHERE (column1,column2) = (1,1); SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;
The normal use of row constructors is for comparisons with
subqueries that return two or more columns. For example, the
following query answers the request, “find all rows in
table t1
that also exist in table
t2
”:
SELECT column1,column2,column3 FROM t1 WHERE (column1,column2,column3) IN (SELECT column1,column2,column3 FROM t2);
If a subquery returns any rows at all, EXISTS
is
subquery
TRUE
, and NOT EXISTS
is
subquery
FALSE
. For example:
SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);
Traditionally, an EXISTS
subquery starts
with SELECT *
, but it could begin with
SELECT 5
or SELECT
column1
or anything at all. MySQL ignores the
SELECT
list in such a subquery, so it makes
no difference.
For the preceding example, if t2
contains
any rows, even rows with nothing but NULL
values, the EXISTS
condition is
TRUE
. This is actually an unlikely example
because a [NOT] EXISTS
subquery almost
always contains correlations. Here are some more realistic
examples:
What kind of store is present in one or more cities?
SELECT DISTINCT store_type FROM stores WHERE EXISTS (SELECT * FROM cities_stores WHERE cities_stores.store_type = stores.store_type);
What kind of store is present in no cities?
SELECT DISTINCT store_type FROM stores WHERE NOT EXISTS (SELECT * FROM cities_stores WHERE cities_stores.store_type = stores.store_type);
What kind of store is present in all cities?
SELECT DISTINCT store_type FROM stores s1 WHERE NOT EXISTS ( SELECT * FROM cities WHERE NOT EXISTS ( SELECT * FROM cities_stores WHERE cities_stores.city = cities.city AND cities_stores.store_type = stores.store_type));
The last example is a double-nested NOT
EXISTS
query. That is, it has a NOT
EXISTS
clause within a NOT EXISTS
clause. Formally, it answers the question “does a city
exist with a store that is not in
Stores
”? But it is easier to say
that a nested NOT EXISTS
answers the
question “is x
TRUE
for all
y
?”
A correlated subquery is a subquery that contains a reference to a table that also appears in the outer query. For example:
SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);
Notice that the subquery contains a reference to a column of
t1
, even though the subquery's
FROM
clause does not mention a table
t1
. So, MySQL looks outside the subquery,
and finds t1
in the outer query.
Suppose that table t1
contains a row where
column1 = 5
and column2 =
6
; meanwhile, table t2
contains a
row where column1 = 5
and column2
= 7
. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2)
would be
TRUE
, but in this example, the
WHERE
clause within the subquery is
FALSE
(because (5,6)
is
not equal to (5,7)
), so the subquery as a
whole is FALSE
.
Scoping rule: MySQL evaluates from inside to outside. For example:
SELECT column1 FROM t1 AS x WHERE x.column1 = (SELECT column1 FROM t2 AS x WHERE x.column1 = (SELECT column1 FROM t3 WHERE x.column2 = t3.column1));
In this statement, x.column2
must be a
column in table t2
because SELECT
column1 FROM t2 AS x ...
renames
t2
. It is not a column in table
t1
because SELECT column1 FROM t1
...
is an outer query that is farther
out.
For subqueries in HAVING
or ORDER
BY
clauses, MySQL also looks for column names in the
outer select list.
For certain cases, a correlated subquery is optimized. For example:
val
IN (SELECTkey_val
FROMtbl_name
WHEREcorrelated_condition
)
Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve performance.
Aggregate functions in correlated subqueries may contain outer references, provided the function contains nothing but outer references, and provided the function is not contained in another function or expression.
Subqueries are legal in a SELECT
statement's FROM
clause. The actual syntax
is:
SELECT ... FROM (subquery
) [AS]name
...
The [AS]
clause is mandatory, because every table in a
name
FROM
clause must have a name. Any columns
in the subquery
select list must
have unique names.
For the sake of illustration, assume that you have this table:
CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);
Here is how to use a subquery in the FROM
clause, using the example table:
INSERT INTO t1 VALUES (1,'1',1.0); INSERT INTO t1 VALUES (2,'2',2.0); SELECT sb1,sb2,sb3 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb WHERE sb1 > 1;
Result: 2, '2', 4.0
.
Here is another example: Suppose that you want to know the average of a set of sums for a grouped table. This does not work:
SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;
However, this query provides the desired information:
SELECT AVG(sum_column1) FROM (SELECT SUM(column1) AS sum_column1 FROM t1 GROUP BY column1) AS t1;
Notice that the column name used within the subquery
(sum_column1
) is recognized in the outer
query.
Subqueries in the FROM
clause can return a
scalar, column, row, or table. Subqueries in the
FROM
clause cannot be correlated
subqueries, unless used within the ON
clause of a JOIN
operation.
Subqueries in the FROM
clause are executed
even for the EXPLAIN
statement (that is,
derived temporary tables are built). This occurs because
upper-level queries need information about all tables during
the optimization phase, and the table represented by a
subquery in the FROM
clause is unavailable
unless the subquery is executed.
It is possible under certain circumstances to modify table
data using EXPLAIN SELECT
. This can occur
if the outer query accesses any tables and an inner query
invokes a stored function that changes one or more rows of a
table. For example, suppose there are two tables
t1
and t2
in database
d1
, created as shown here:
mysql>CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec) mysql>USE d1;
Database changed mysql>CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec) mysql>CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)
Now we create a stored function f1
which
modifies t2
:
mysql>DELIMITER //
mysql>CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql>BEGIN
mysql>INSERT INTO t2 VALUES (p1);
mysql>RETURN p1;
mysql>END //
Query OK, 0 rows affected (0.01 sec) mysql>DELIMITER ;
Referencing the function directly in an EXPLAIN SELECT does not have any affect on t2, as shown here:
mysql>SELECT * FROM t2;
Empty set (0.00 sec) mysql>EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+------+----------------+ | 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used | +----+-------------+-------+------+---------------+------+---------+------+------+----------------+ 1 row in set (0.00 sec) mysql>SELECT * FROM t2;
Empty set (0.00 sec)
This is because the SELECT
statement did
not reference any tables, as can be seen in the
table
and Extra
columns
of the output. This is also true of the following nested
SELECT
:
mysql>EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+------+----------------+ | 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used | +----+-------------+-------+------+---------------+------+---------+------+------+----------------+ 1 row in set, 1 warning (0.00 sec) mysql>SHOW WARNINGS;
+-------+------+------------------------------------------+ | Level | Code | Message | +-------+------+------------------------------------------+ | Note | 1249 | Select 2 was reduced during optimization | +-------+------+------------------------------------------+ 1 row in set (0.00 sec) mysql>SELECT * FROM t2;
Empty set (0.00 sec)
However, if the outer SELECT
references
any tables, then the optimizer executes the statement in the
subquery as well:
mysql>EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+ | 1 | PRIMARY | a1 | system | NULL | NULL | NULL | NULL | 0 | const row not found | | 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | | | 2 | DERIVED | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used | +----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+ 3 rows in set (0.00 sec) mysql>SELECT * FROM t2;
+------+ | c1 | +------+ | 5 | +------+ 1 row in set (0.00 sec)
This also means that an EXPLAIN SELECT
statement such as the one shown here may take a long time to
execute:
EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));
This is because the
BENCHMARK()
function is
executed once for each row in t1
.
There are some errors that apply only to subqueries. This section describes them.
Unsupported subquery syntax:
ERROR 1235 (ER_NOT_SUPPORTED_YET) SQLSTATE = 42000 Message = "This version of MySQL does not yet support 'LIMIT & IN/ALL/ANY/SOME subquery'"
This means that statements of the following form do not work yet:
SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)
Incorrect number of columns from subquery:
ERROR 1241 (ER_OPERAND_COL) SQLSTATE = 21000 Message = "Operand should contain 1 column(s)"
This error occurs in cases like this:
SELECT (SELECT column1, column2 FROM t2) FROM t1;
You may use a subquery that returns multiple columns, if the purpose is comparison. In other contexts, the subquery must be a scalar operand. See Section 12.2.8.5, “Row Subqueries”.
Incorrect number of rows from subquery:
ERROR 1242 (ER_SUBSELECT_NO_1_ROW) SQLSTATE = 21000 Message = "Subquery returns more than 1 row"
This error occurs for statements where the subquery returns more than one row. Consider the following example:
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);
If SELECT column1 FROM t2
returns just
one row, the previous query will work. If the subquery
returns more than one row, error 1242 will occur. In that
case, the query should be rewritten as:
SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);
Incorrectly used table in subquery:
Error 1093 (ER_UPDATE_TABLE_USED) SQLSTATE = HY000 Message = "You can't specify target table 'x' for update in FROM clause"
This error occurs in cases such as the following:
UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);
You can use a subquery for assignment within an
UPDATE
statement because subqueries are
legal in UPDATE
and
DELETE
statements as well as in
SELECT
statements. However, you cannot
use the same table (in this case, table
t1
) for both the subquery's
FROM
clause and the update target.
For transactional storage engines, the failure of a subquery causes the entire statement to fail. For non-transactional storage engines, data modifications made before the error was encountered are preserved.
Development is ongoing, so no optimization tip is reliable for the long term. The following list provides some interesting tricks that you might want to play with:
Use subquery clauses that affect the number or order of the rows in the subquery. For example:
SELECT * FROM t1 WHERE t1.column1 IN (SELECT column1 FROM t2 ORDER BY column1); SELECT * FROM t1 WHERE t1.column1 IN (SELECT DISTINCT column1 FROM t2); SELECT * FROM t1 WHERE EXISTS (SELECT * FROM t2 LIMIT 1);
Replace a join with a subquery. For example, try this:
SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN ( SELECT column1 FROM t2);
Instead of this:
SELECT DISTINCT t1.column1 FROM t1, t2 WHERE t1.column1 = t2.column1;
Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not support subqueries. However, in some cases, converting a subquery to a join may improve performance. See Section 12.2.8.11, “Rewriting Subqueries as Joins”.
Move clauses from outside to inside the subquery. For example, use this query:
SELECT * FROM t1 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);
Instead of this query:
SELECT * FROM t1 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);
For another example, use this query:
SELECT (SELECT column1 + 5 FROM t1) FROM t2;
Instead of this query:
SELECT (SELECT column1 FROM t1) + 5 FROM t2;
Use a row subquery instead of a correlated subquery. For example, use this query:
SELECT * FROM t1 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);
Instead of this query:
SELECT * FROM t1 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1 AND t2.column2=t1.column2);
Use NOT (a = ANY (...))
rather than
a <> ALL (...)
.
Use x = ANY (
rather than table containing
(1,2)
)x=1 OR
x=2
.
Use = ANY
rather than
EXISTS
.
For uncorrelated subqueries that always return one row,
IN
is always slower than
=
. For example, use this query:
SELECT * FROM t1 WHERE t1.col_name
= (SELECT a FROM t2 WHERE b =some_const
);
Instead of this query:
SELECT * FROM t1 WHERE t1.col_name
IN (SELECT a FROM t2 WHERE b =some_const
);
These tricks might cause programs to go faster or slower.
Using MySQL facilities like the
BENCHMARK()
function, you can
get an idea about what helps in your own situation. See
Section 11.11.3, “Information Functions”.
Some optimizations that MySQL itself makes are:
MySQL executes uncorrelated subqueries only once. Use
EXPLAIN
to make sure that a given
subquery really is uncorrelated.
MySQL rewrites IN
,
ALL
, ANY
, and
SOME
subqueries in an attempt to take
advantage of the possibility that the select-list columns
in the subquery are indexed.
MySQL replaces subqueries of the following form with an
index-lookup function, which EXPLAIN
describes as a special join type
(unique_subquery
or
index_subquery
):
... IN (SELECTindexed_column
FROMsingle_table
...)
MySQL enhances expressions of the following form with an
expression involving MIN()
or MAX()
, unless
NULL
values or empty sets are involved:
value
{ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery
)
For example, this WHERE
clause:
WHERE 5 > ALL (SELECT x FROM t)
might be treated by the optimizer like this:
WHERE 5 > (SELECT MAX(x) FROM t)
See also the MySQL Internals Manual chapter How MySQL Transforms Subqueries.
Although MySQL 5.1 supports subqueries (see
Section 12.2.8, “Subquery Syntax”), it is still true that there are
sometimes other ways to test membership in a set of values. It
is also true that on some occasions, it is not only possible
to rewrite a query without a subquery, but it can be more
efficient to make use of some of these techniques rather than
to use subqueries. One of these is the IN()
construct:
For example, this query:
SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);
Can be rewritten as:
SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;
The queries:
SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2); SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);
Can be rewritten as:
SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id WHERE table2.id IS NULL;
A LEFT [OUTER] JOIN
can be faster than an
equivalent subquery because the server might be able to
optimize it better — a fact that is not specific to
MySQL Server alone. Prior to SQL-92, outer joins did not
exist, so subqueries were the only way to do certain things.
Today, MySQL Server and many other modern database systems
offer a wide range of outer join types.
MySQL Server supports multiple-table DELETE
statements that can be used to efficiently delete rows based
on information from one table or even from many tables at the
same time. Multiple-table UPDATE
statements
are also supported. See Section 12.2.1, “DELETE
Syntax”, and
Section 12.2.10, “UPDATE
Syntax”.
TRUNCATE [TABLE] tbl_name
TRUNCATE TABLE
empties a table completely.
Logically, this is equivalent to a DELETE
statement that deletes all rows, but there are practical
differences under some circumstances.
For an InnoDB
table,
InnoDB
processes TRUNCATE
TABLE
by deleting rows one by one if there are any
FOREIGN KEY
constraints that reference the
table. If there are no FOREIGN KEY
constraints, InnoDB
performs fast truncation
by dropping the original table and creating an empty one with
the same definition, which is much faster than deleting rows one
by one. The AUTO_INCREMENT
counter is reset
by TRUNCATE TABLE
, regardless of whether
there is a FOREIGN KEY
constraint.
In the case that FOREIGN KEY
constraints
reference the table, InnoDB
deletes rows one
by one and processes the constraints on each one. If the
FOREIGN KEY
constraint specifies
DELETE CASCADE
, rows from the child
(referenced) table are deleted, and the truncated table becomes
empty. If the FOREIGN KEY
constraint does
not specify CASCADE
, the
TRUNCATE
statement deletes rows one by one
and stops if it encounters a parent row that is referenced by
the child, returning this error:
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails (`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`))
This is the same as a DELETE
statement with
no WHERE
clause.
The count of rows affected by TRUNCATE TABLE
is accurate only when it is mapped to a
DELETE
statement.
For other storage engines, TRUNCATE TABLE
differs from DELETE
in the following ways in
MySQL 5.1:
Truncate operations drop and re-create the table, which is much faster than deleting rows one by one, particularly for large tables.
Truncate operations are not transaction-safe; an error occurs when attempting one in the course of an active transaction or active table lock.
Truncation operations do not return the number of deleted rows.
As long as the table format file
is valid, the table can be re-created as an empty table with
tbl_name
.frmTRUNCATE TABLE
, even if the data or index
files have become corrupted.
The table handler does not remember the last used
AUTO_INCREMENT
value, but starts counting
from the beginning. This is true even for
MyISAM
and InnoDB
,
which normally do not reuse sequence values.
When used with partitioned tables, TRUNCATE
TABLE
preserves the partitioning; that is, the
data and index files are dropped and re-created, while the
partition definitions (.par
) file is
unaffected.
Since truncation of a table does not make any use of
DELETE
, the TRUNCATE
statement does not invoke ON DELETE
triggers.
TRUNCATE TABLE
requires the
DROP
privilege as of MySQL 5.1.16. (Before
5.1.16, it requires the DELETE
privilege.
Single-table syntax:
UPDATE [LOW_PRIORITY] [IGNORE]tbl_name
SETcol_name1
=expr1
[,col_name2
=expr2
] ... [WHEREwhere_condition
] [ORDER BY ...] [LIMITrow_count
]
Multiple-table syntax:
UPDATE [LOW_PRIORITY] [IGNORE]table_references
SETcol_name1
=expr1
[,col_name2
=expr2
] ... [WHEREwhere_condition
]
For the single-table syntax, the UPDATE
statement updates columns of existing rows in
tbl_name
with new values. The
SET
clause indicates which columns to modify
and the values they should be given. The
WHERE
clause, if given, specifies the
conditions that identify which rows to update. With no
WHERE
clause, all rows are updated. If the
ORDER BY
clause is specified, the rows are
updated in the order that is specified. The
LIMIT
clause places a limit on the number of
rows that can be updated.
For the multiple-table syntax, UPDATE
updates
rows in each table named in
table_references
that satisfy the
conditions. In this case, ORDER BY
and
LIMIT
cannot be used.
where_condition
is an expression that
evaluates to true for each row to be updated. It is specified as
described in Section 12.2.7, “SELECT
Syntax”.
The UPDATE
statement supports the following
modifiers:
If you use the LOW_PRIORITY
keyword,
execution of the UPDATE
is delayed until
no other clients are reading from the table. This affects
only storage engines that use only table-level locking
(MyISAM
, MEMORY
,
MERGE
).
If you use the IGNORE
keyword, the update
statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur are not
updated. Rows for which columns are updated to values that
would cause data conversion errors are updated to the
closest valid values instead.
If you access a column from tbl_name
in an expression, UPDATE
uses the current
value of the column. For example, the following statement sets
the age
column to one more than its current
value:
UPDATE persondata SET age=age+1;
Single-table UPDATE
assignments are generally
evaluated from left to right. For multiple-table updates, there
is no guarantee that assignments are carried out in any
particular order.
If you set a column to the value it currently has, MySQL notices this and does not update it.
If you update a column that has been declared NOT
NULL
by setting to NULL
, the column
is set to the default value appropriate for the data type and
the warning count is incremented. The default value is
0
for numeric types, the empty string
(''
) for string types, and the
“zero” value for date and time types.
UPDATE
returns the number of rows that were
actually changed. The
mysql_info()
C API function
returns the number of rows that were matched and updated and the
number of warnings that occurred during the
UPDATE
.
You can use LIMIT
to restrict the
scope of the row_count
UPDATE
. A
LIMIT
clause is a rows-matched restriction.
The statement stops as soon as it has found
row_count
rows that satisfy the
WHERE
clause, whether or not they actually
were changed.
If an UPDATE
statement includes an
ORDER BY
clause, the rows are updated in the
order specified by the clause. This can be useful in certain
situations that might otherwise result in an error. Suppose that
a table t
contains a column
id
that has a unique index. The following
statement could fail with a duplicate-key error, depending on
the order in which rows are updated:
UPDATE t SET id = id + 1;
For example, if the table contains 1 and 2 in the
id
column and 1 is updated to 2 before 2 is
updated to 3, an error occurs. To avoid this problem, add an
ORDER BY
clause to cause the rows with larger
id
values to be updated before those with
smaller values:
UPDATE t SET id = id + 1 ORDER BY id DESC;
You can also perform UPDATE
operations
covering multiple tables. However, you cannot use ORDER
BY
or LIMIT
with a multiple-table
UPDATE
. The
table_references
clause lists the
tables involved in the join. Its syntax is described in
Section 12.2.7.1, “JOIN
Syntax”. Here is an example:
UPDATE items,month SET items.price=month.price WHERE items.id=month.id;
The preceding example shows an inner join that uses the comma
operator, but multiple-table UPDATE
statements can use any type of join allowed in
SELECT
statements, such as LEFT
JOIN
.
You need the UPDATE
privilege only for
columns referenced in a multiple-table UPDATE
that are actually updated. You need only the
SELECT
privilege for any columns that are
read but not modified.
If you use a multiple-table UPDATE
statement
involving InnoDB
tables for which there are
foreign key constraints, the MySQL optimizer might process
tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back.
Instead, update a single table and rely on the ON
UPDATE
capabilities that InnoDB
provides to cause the other tables to be modified accordingly.
See Section 13.5.6.4, “FOREIGN KEY
Constraints”.
Currently, you cannot update a table and select from the same table in a subquery.
{DESCRIBE | DESC}tbl_name
[col_name
|wild
]
DESCRIBE
provides information about the
columns in a table. It is a shortcut for SHOW COLUMNS
FROM
. These statements also display information for
views. (See Section 12.5.4.4, “SHOW COLUMNS
Syntax”.)
col_name
can be a column name, or a
string containing the SQL “%
”
and “_
” wildcard characters to
obtain output only for the columns with names matching the
string. There is no need to enclose the string within quotes
unless it contains spaces or other special characters.
mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)
The description for SHOW COLUMNS
provides
more information about the output columns (see
Section 12.5.4.4, “SHOW COLUMNS
Syntax”).
If the data types differ from what you expect them to be based
on a CREATE TABLE
statement, note that MySQL
sometimes changes data types when you create or alter a table.
The conditions under which this occurs are described in
Section 12.1.10.1, “Silent Column Specification Changes”.
The DESCRIBE
statement is provided for
compatibility with Oracle.
The SHOW CREATE TABLE
, SHOW TABLE
STATUS
, and SHOW INDEX
statements
also provide information about tables. See
Section 12.5.4, “SHOW
Syntax”.
EXPLAIN tbl_name
Or:
EXPLAIN [EXTENDED | PARTITIONS] SELECT select_options
The EXPLAIN
statement can be used either as a
synonym for DESCRIBE
or as a way to obtain
information about how MySQL executes a SELECT
statement:
EXPLAIN
is synonymous
with tbl_name
DESCRIBE
or
tbl_name
SHOW COLUMNS FROM
.
tbl_name
For a description of the DESCRIBE
and
SHOW COLUMNS
statements, see
Section 12.3.1, “DESCRIBE
Syntax”, and
Section 12.5.4.4, “SHOW COLUMNS
Syntax”.
When you precede a SELECT
statement with
the keyword EXPLAIN
, MySQL displays
information from the optimizer about the query execution
plan. That is, MySQL explains how it would process the
SELECT
, including information about how
tables are joined and in which order.
For information regarding the use of
EXPLAIN
for obtaining query execution
plan information, see Section 7.2.1, “Optimizing Queries with EXPLAIN
”.
EXPLAIN PARTITIONS
is available beginning
with MySQL 5.1.5. It is useful only when examining queries
involving partitioned tables.
For details, see Section 21.3.4, “Obtaining Information About Partitions”.
HELP 'search_string
'
The HELP
statement returns online information
from the MySQL Reference manual. Its proper operation requires
that the help tables in the mysql
database be
initialized with help topic information (see
Section 5.1.8, “Server-Side Help”).
The HELP
statement searches the help tables
for the given search string and displays the result of the
search. The search string is not case sensitive.
The HELP statement understands several types of search strings:
At the most general level, use contents
to retrieve a list of the top-level help categories:
HELP 'contents'
For a list of topics in a given help category, such as
Data Types
, use the category name:
HELP 'data types'
For help on a specific help topic, such as the
ASCII()
function or the
CREATE TABLE
statement, use the
associated keyword or keywords:
HELP 'ascii' HELP 'create table'
In other words, the search string matches a category, many
topics, or a single topic. You cannot necessarily tell in
advance whether a given search string will return a list of
items or the help information for a single help topic. However,
you can tell what kind of response HELP
returned by examining the number of rows and columns in the
result set.
The following descriptions indicate the forms that the result
set can take. Output for the example statements is shown using
the familar “tabular” or “vertical”
format that you see when using the mysql
client, but note that mysql itself reformats
HELP
result sets in a different way.
Empty result set
No match could be found for the search string.
Result set containing a single row with three columns
This means that the search string yielded a hit for the help topic. The result has three columns:
name
: The topic name.
description
: Descriptive help text
for the topic.
example
: Usage example or exmples.
This column might be blank.
Example: HELP 'replace'
Yields:
name: REPLACE description: Syntax: REPLACE(str,from_str,to_str) Returns the string str with all occurrences of the string from_str replaced by the string to_str. REPLACE() performs a case-sensitive match when searching for from_str. example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww'); -> 'WwWwWw.mysql.com'
Result set containing multiple rows with two columns
This means that the search string matched many help topics. The result set indicates the help topic names:
name
: The help topic name.
is_it_category
: Y
if the name represents a help category,
N
if it does not. If it does not, the
name
value when specified as the
argument to the HELP
statement should
yield a single-row result set containing a description
for the named item.
Example: HELP 'status'
Yields:
+-----------------------+----------------+ | name | is_it_category | +-----------------------+----------------+ | SHOW | N | | SHOW ENGINE | N | | SHOW INNODB STATUS | N | | SHOW MASTER STATUS | N | | SHOW PROCEDURE STATUS | N | | SHOW SLAVE STATUS | N | | SHOW STATUS | N | | SHOW TABLE STATUS | N | +-----------------------+----------------+
Result set containing multiple rows with three columns
This means the search string matches a category. The result set contains category entries:
source_category_name
: The help
category name.
name
: The category or topic name
is_it_category
: Y
if the name represents a help category,
N
if it does not. If it does not, the
name
value when specified as the
argument to the HELP
statement should
yield a single-row result set containing a description
for the named item.
Example: HELP 'functions'
Yields:
+----------------------+-------------------------+----------------+ | source_category_name | name | is_it_category | +----------------------+-------------------------+----------------+ | Functions | CREATE FUNCTION | N | | Functions | DROP FUNCTION | N | | Functions | Bit Functions | Y | | Functions | Comparison operators | Y | | Functions | Control flow functions | Y | | Functions | Date and Time Functions | Y | | Functions | Encryption Functions | Y | | Functions | Information Functions | Y | | Functions | Logical operators | Y | | Functions | Miscellaneous Functions | Y | | Functions | Numeric Functions | Y | | Functions | String Functions | Y | +----------------------+-------------------------+----------------+
Before MySQL 5.1.17, if you intend to use the
HELP
statement while other tables are locked
with LOCK TABLES
, you must also lock the
required
mysql.help_
tables. See Section 12.4.5, “xxx
LOCK TABLES
and UNLOCK TABLES
Syntax”.
USE db_name
The USE
statement tells MySQL to use the
db_name
db_name
database as the default
(current) database for subsequent statements. The database
remains the default until the end of the session or another
USE
statement is issued:
USE db1; SELECT COUNT(*) FROM mytable; # selects from db1.mytable USE db2; SELECT COUNT(*) FROM mytable; # selects from db2.mytable
Making a particular database the default by means of the
USE
statement does not preclude you from
accessing tables in other databases. The following example
accesses the author
table from the
db1
database and the
editor
table from the db2
database:
USE db1; SELECT author_name,editor_name FROM author,db2.editor WHERE author.editor_id = db2.editor.editor_id;
The USE
statement is provided for
compatibility with Sybase.
MySQL supports local transactions (within a given client
connection) through statements such as SET
AUTOCOMMIT
, START TRANSACTION
,
COMMIT
, and ROLLBACK
. See
Section 12.4.1, “START TRANSACTION
, COMMIT
, and
ROLLBACK
Syntax”. XA transaction support enables MySQL to
participate in distributed transactions as well. See
Section 12.4.7, “XA Transactions”.
START TRANSACTION [WITH CONSISTENT SNAPSHOT] | BEGIN [WORK] COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE] ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE] SET AUTOCOMMIT = {0 | 1}
The START TRANSACTION
and
BEGIN
statement begin a new transaction.
COMMIT
commits the current transaction,
making its changes permanent. ROLLBACK
rolls
back the current transaction, canceling its changes. The
SET AUTOCOMMIT
statement disables or enables
the default autocommit mode for the current connection.
The optional WORK
keyword is supported for
COMMIT
and ROLLBACK
, as
are the CHAIN
and RELEASE
clauses. CHAIN
and RELEASE
can be used for additional control over transaction completion.
The value of the completion_type
system
variable determines the default completion behavior. See
Section 5.1.3, “System Variables”.
The AND CHAIN
clause causes a new transaction
to begin as soon as the current one ends, and the new
transaction has the same isolation level as the just-terminated
transaction. The RELEASE
clause causes the
server to disconnect the current client connection after
terminating the current transaction. Including the
NO
keyword suppresses
CHAIN
or RELEASE
completion, which can be useful if the
completion_type
system variable is set to
cause chaining or release completion by default.
By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a statement that updates (modifies) a table, MySQL stores the update on disk.
If you are using a transaction-safe storage engine (such as
InnoDB
, or NDBCLUSTER
),
you can disable autocommit mode with the following statement:
SET AUTOCOMMIT=0;
After disabling autocommit mode by setting the
AUTOCOMMIT
variable to zero, you must use
COMMIT
to store your changes to disk or
ROLLBACK
if you want to ignore the changes
you have made since the beginning of your transaction.
To disable autocommit mode for a single series of statements,
use the START TRANSACTION
statement:
START TRANSACTION; SELECT @A:=SUM(salary) FROM table1 WHERE type=1; UPDATE table2 SET summary=@A WHERE type=1; COMMIT;
With START TRANSACTION
, autocommit remains
disabled until you end the transaction with
COMMIT
or ROLLBACK
. The
autocommit mode then reverts to its previous state.
BEGIN
and BEGIN WORK
are
supported as aliases of START TRANSACTION
for
initiating a transaction. START TRANSACTION
is standard SQL syntax and is the recommended way to start an
ad-hoc transaction.
Many APIs used for writing MySQL client applications (such as
JDBC) provide their own methods for starting transactions that
can (and sometimes should) be used instead of sending a
START TRANSACTION
statement from the
client. See Chapter 29, APIs and Libraries, or the documentation for
your API, for more information.
The BEGIN
statement differs from the use of
the BEGIN
keyword that starts a
BEGIN ... END
compound statement. The latter
does not begin a transaction. See Section 23.2.5, “BEGIN ... END
Compound Statement Syntax”.
You can also begin a transaction like this:
START TRANSACTION WITH CONSISTENT SNAPSHOT;
The WITH CONSISTENT SNAPSHOT
clause starts a
consistent read for storage engines that are capable of it. This
applies only to InnoDB
. The effect is the
same as issuing a START TRANSACTION
followed
by a SELECT
from any
InnoDB
table. See
Section 13.5.10.4, “Consistent Non-Locking Read”. The WITH
CONSISTENT SNAPSHOT
clause does not change the current
transaction isolation level, so it provides a consistent
snapshot only if the current isolation level is one that allows
consistent read (REPEATABLE READ
or
SERIALIZABLE
).
Beginning a transaction causes any pending transaction to be committed. See Section 12.4.3, “Statements That Cause an Implicit Commit”, for more information.
Beginning a transaction also causes table locks acquired with
LOCK TABLES
to be released, as though you had
executed UNLOCK TABLES
. Beginning a
transaction does not release a global read lock acquired with
FLUSH TABLES WITH READ LOCK
.
For best results, transactions should be performed using only tables managed by a single transactional storage engine. Otherwise, the following problems can occur:
If you use tables from more than one transaction-safe
storage engine (such as InnoDB
and
Falcon
), and the transaction isolation
level is not SERIALIZABLE
, it is possible
that when one transaction commits, another ongoing
transaction that uses the same tables will see only some of
the changes made by the first transaction. That is, the
atomicity of transactions is not guaranteed with mixed
engines and inconsistencies can result. (If mixed-engine
transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL
to set the isolation
level to SERIALIZABLE
on a
per-transaction basis as necessary.)
If you use non-transaction-safe tables within a transaction, any changes to those tables are stored at once, regardless of the status of autocommit mode.
If you issue a ROLLBACK
statement after
updating a non-transactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK
warning
occurs. Changes to transaction-safe tables are rolled back,
but not changes to non-transaction-safe tables.
Each transaction is stored in the binary log in one chunk, upon
COMMIT
. Transactions that are rolled back are
not logged. (Exception:
Modifications to non-transactional tables cannot be rolled back.
If a transaction that is rolled back includes modifications to
non-transactional tables, the entire transaction is logged with
a ROLLBACK
statement at the end to ensure
that the modifications to those tables are replicated.) See
Section 5.2.4, “The Binary Log”.
You can change the isolation level for transactions with
SET TRANSACTION ISOLATION LEVEL
. See
Section 12.4.6, “SET TRANSACTION
Syntax”.
Rolling back can be a slow operation that may occur without the
user having explicitly asked for it (for example, when an error
occurs). Because of this, SHOW PROCESSLIST
displays Rolling back
in the
State
column for the connection during
implicit and explicit (ROLLBACK
SQL
statement) rollbacks.
Some statements cannot be rolled back. In general, these include data definition language (DDL) statements, such as those that create or drop databases, those that create, drop, or alter tables or stored routines.
You should design your transactions not to include such
statements. If you issue a statement early in a transaction that
cannot be rolled back, and then another statement later fails,
the full effect of the transaction cannot be rolled back in such
cases by issuing a ROLLBACK
statement.
Each of the following statements (and any synonyms for them)
implicitly end a transaction, as if you had done a
COMMIT
before executing the statement:
ALTER EVENT
, ALTER
FUNCTION
, ALTER PROCEDURE
,
ALTER TABLE
, BEGIN
,
CREATE DATABASE
, CREATE
EVENT
, CREATE FUNCTION
,
CREATE INDEX
, CREATE
PROCEDURE
, CREATE TABLE
,
DROP DATABASE
, DROP
EVENT
, DROP FUNCTION
,
DROP INDEX
, DROP
PROCEDURE
, DROP TABLE
,
LOAD DATA INFILE
LOCK
TABLES
, RENAME TABLE
,
SET AUTOCOMMIT=1
(if the value is not
already 1), START TRANSACTION
,
TRUNCATE TABLE
, UNLOCK
TABLES
.
The BEGIN
statement differs from the use
of the BEGIN
keyword that starts a
BEGIN ... END
compound statement. The
latter does not cause an implicit commit. See
Section 23.2.5, “BEGIN ... END
Compound Statement Syntax”.
Beginning with MySQL 5.1.3, ALTER VIEW
,
CREATE TRIGGER
, CREATE
USER
, CREATE VIEW
,
DROP TRIGGER
, DROP
USER
, DROP VIEW
, and
RENAME USER
cause an implicit commit.
UNLOCK TABLES
commits a transaction only
if any tables currently have been locked with LOCK
TABLES
. This does not occur for UNLOCK
TABLES
following FLUSH TABLES WITH READ
LOCK
because the latter statement does not acquire
table-level locks.
The CREATE TABLE
statement in
InnoDB
is processed as a single
transaction. This means that a ROLLBACK
from the user does not undo CREATE TABLE
statements the user made during that transaction.
CREATE TABLE
and DROP
TABLE
do not commit a transaction if the
TEMPORARY
keyword is used. (This does not
apply to other operations on temporary tables such as
CREATE INDEX
, which do cause a commit.)
However, although no implicit commit occurs, neither can the
statement be rolled back. Therefore, use of such statements
will violate transaction atomicity: For example, if you use
CREATE TEMPORARY TABLE
and then roll back
the transaction, the table remains in existence.
In MySQL 5.1.11 and earlier, LOAD DATA
INFILE
caused an implicit commit for all storage
engines. Beginning with MySQL 5.1.12, it causes an implicit
commit only for tables using the NDB
storage engine. For more information, see Bug#11151.
Beginning with MySQL 5.1.15, CREATE TABLE ...
SELECT
causes an implicit commit before and after
the statement is executed when you are creating
non-temporary tables. (No commit occurs for CREATE
TEMPORARY TABLE ... SELECT
.) This is to prevent an
issue during replication where the table could be created on
the master after a rollback, but fail to be recorded in the
binary log, and therefore not replicated to the slave. For
more information, see Bug#22865.
Beginning with MySQL 5.1.23, GRANT
,
REVOKE
, and SET
PASSWORD
statements cause an implicit commit.
Transactions cannot be nested. This is a consequence of the
implicit COMMIT
performed for any current
transaction when you issue a START
TRANSACTION
statement or one of its synonyms.
Statements that cause an implicit commit cannot be used in an XA
transaction while the transaction is in an
ACTIVE
state.
SAVEPOINTidentifier
ROLLBACK [WORK] TO [SAVEPOINT]identifier
RELEASE SAVEPOINTidentifier
InnoDB
supports the SQL statements
SAVEPOINT
, ROLLBACK TO
SAVEPOINT
, RELEASE SAVEPOINT
and
the optional WORK
keyword for
ROLLBACK
.
The SAVEPOINT
statement sets a named
transaction savepoint with a name of
identifier
. If the current
transaction has a savepoint with the same name, the old
savepoint is deleted and a new one is set.
The ROLLBACK TO SAVEPOINT
statement rolls
back a transaction to the named savepoint. Modifications that
the current transaction made to rows after the savepoint was set
are undone in the rollback, but InnoDB
does
not release the row locks that were stored
in memory after the savepoint. (Note that for a new inserted
row, the lock information is carried by the transaction ID
stored in the row; the lock is not separately stored in memory.
In this case, the row lock is released in the undo.) Savepoints
that were set at a later time than the named savepoint are
deleted.
If the ROLLBACK TO SAVEPOINT
statement
returns the following error, it means that no savepoint with the
specified name exists:
ERROR 1181: Got error 153 during ROLLBACK
The RELEASE SAVEPOINT
statement removes the
named savepoint from the set of savepoints of the current
transaction. No commit or rollback occurs. It is an error if the
savepoint does not exist.
All savepoints of the current transaction are deleted if you
execute a COMMIT
, or a
ROLLBACK
that does not name a savepoint.
A new savepoint level is created when a stored function is invoked or a trigger is activated. The savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new level. When the function or trigger terminates, any savepoints it created are released and the previous savepoint level is restored.
LOCK TABLEStbl_name
[[AS]alias
]lock_type
[,tbl_name
[[AS]alias
]lock_type
] ...lock_type
: READ [LOCAL] | [LOW_PRIORITY] WRITE UNLOCK TABLES
MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other sessions for access to tables, or to prevent other sessions from modifying tables during periods when a session requires exclusive access to them. A session can acquire or release locks only for itself. One session cannot acquire locks for another session or release locks held by another session.
LOCK TABLES
acquires table locks for the
current thread. It locks base tables or views. (For view
locking, LOCK TABLES
adds all base tables
used in the view to the set of tables to be locked and locks
them automatically.) To use LOCK TABLES
, you
must have the LOCK TABLES
privilege, and the
SELECT
privilege for each object to be
locked.
MySQL enables client sessions to acquire table locks explicitly Locks may be used to emulate transactions or to get more speed when updating tables. This is explained in more detail later in this section.
UNLOCK TABLES
explicitly releases any table
locks held by the current thread. Another use for
UNLOCK TABLES
is to release the global read
lock acquired with FLUSH TABLES WITH READ
LOCK
. (You can lock all tables in all databases with a
read lock with the FLUSH TABLES WITH READ
LOCK
statement. See Section 12.5.5.2, “FLUSH
Syntax”. This is a
very convenient way to get backups if you have a filesystem such
as Veritas that can take snapshots in time.)
The following discussion applies only to
non-TEMPORARY
tables. LOCK
TABLES
is allowed (but ignored) for a
TEMPORARY
table. The table can be accessed
freely by the session within which it was created, regardless of
what other locking may be in effect. No lock is necessary
because no other session can see the table.
The following general rules apply to acquisition and release of locks by a given thread:
Table locks are acquired with LOCK
TABLES
.
If the LOCK TABLES
statement must wait
due to locks held by other threads on any of the tables, it
blocks until all locks can be acquired.
Table locks are released explicitly with UNLOCK
TABLES
.
Table locks are released implicitly under these conditions:
LOCK TABLES
releases any table locks
currently held by the thread before acquiring new locks.
Beginning a transaction (for example, with
START TRANSACTION
) implicitly
performs an UNLOCK TABLES
.
(Additional information about the interaction between
table locking and transactions is given later in this
section.)
If a client connection drops, the server releases table locks held by the client. If the client reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement issued. The client can detect the error and take appropriate action such as reacquiring the locks or redoing the transaction. See Section 29.2.13, “Controlling Automatic Reconnect Behavior”.
If you use ALTER TABLE
on a locked table,
it may become unlocked. See
Section B.1.7.1, “Problems with ALTER TABLE
”.
A table lock protects only against inappropriate reads or writes
by other clients. The client holding the lock, even a read lock,
can perform table-level operations such as DROP
TABLE
. Truncate operations are not transaction-safe,
so an error occurs if the client attempts one during an active
transaction or while holding a table lock.
When you use LOCK TABLES
, you must lock all
tables that you are going to use in your statements. While the
locks obtained with a LOCK TABLES
statement
are in effect, you cannot access any tables that were not locked
by the statement. If you lock a view, LOCK
TABLES
adds all base tables used in the view to the
set of tables to be locked and locks them automatically.
You cannot refer to a locked table multiple times in a single query using the same name. Use aliases instead, and obtain a separate lock for the table and each alias:
mysql>LOCK TABLE t WRITE, t AS t1 READ;
mysql>INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES mysql>INSERT INTO t SELECT * FROM t AS t1;
The error occurs for the first INSERT
because
there are two references to the same name for a locked table.
The second INSERT
succeeds because the
references to the table use different names.
If your statements refer to a table by means of an alias, you must lock the table using that same alias. It does not work to lock the table without specifying the alias:
mysql>LOCK TABLE t READ;
mysql>SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES
Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:
mysql>LOCK TABLE t AS myalias READ;
mysql>SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES mysql>SELECT * FROM t AS myalias;
If a thread obtains a READ
lock on a table,
that thread (and all other threads) can only read from the
table. If a thread obtains a WRITE
lock on a
table, only the thread holding the lock can write to the table
(that thread can also read from the table); other threads are
blocked from reading or writing the table until the lock has
been released.
The difference between READ
and READ
LOCAL
is that READ LOCAL
allows
non-conflicting INSERT
statements (concurrent
inserts) to execute while the lock is held. However,
READ LOCAL
cannot be used if you are going to
manipulate the database using processes external to the server
while you hold the lock. For InnoDB
tables,
READ LOCAL
is the same as
READ
.
WRITE
locks normally have higher priority
than READ
locks to ensure that updates are
processed as soon as possible. This means that if one thread
obtains a READ
lock and then another thread
requests a WRITE
lock, subsequent
READ
lock requests wait until the thread that
requested the WRITE
lock has obtained the
lock and released it. A request for a LOW_PRIORITY
WRITE
lock, by contrast, allows subsequent
READ
lock requests by other threads to be
satisfied first if they occur while the LOW_PRIORITY
WRITE
request is waiting. You should use
LOW_PRIORITY WRITE
locks only if you are sure
that eventually there will be a time when no threads have a
READ
lock. For InnoDB
tables in transactional mode (autocommit = 0), a waiting
LOW_PRIORITY WRITE
lock acts like a regular
WRITE
lock and causes subsequent
READ
lock requests to wait.
LOCK TABLES
works as follows:
Sort all tables to be locked in an internally defined order. From the user standpoint, this order is undefined.
If a table is to be locked with a read and a write lock, put the write lock request before the read lock request.
Lock one table at a time until the thread gets all locks.
This policy ensures that table locking is deadlock free. There
are, however, other things you need to be aware of about this
policy: If you are using a LOW_PRIORITY WRITE
lock for a table, it means only that MySQL waits for this
particular lock until there are no other threads that want a
READ
lock. When the thread has gotten the
WRITE
lock and is waiting to get the lock for
the next table in the lock table list, all other threads wait
for the WRITE
lock to be released. If this
becomes a serious problem with your application, you should
consider converting some of your tables to transaction-safe
tables.
LOCK TABLES
and UNLOCK
TABLES
interact with the use of transactions as
follows:
LOCK TABLES
is not transaction-safe and
implicitly commits any active transaction before attempting
to lock the tables.
UNLOCK TABLES
implicitly commits any
active transaction, but only if LOCK
TABLES
has been used to acquire table locks. For
example, in the following set of statements, UNLOCK
TABLES
releases the global read lock but does not
commit the transaction because no table locks are in effect:
FLUSH TABLES WITH READ LOCK; START TRANSACTION; SELECT ... ; UNLOCK TABLES;
Beginning a transaction (for example, with START
TRANSACTION
) implicitly commits any current
transaction and releases existing locks.
Several other statements also implicitly cause transactions to be committed and release existing locks. For a list, see Section 12.4.3, “Statements That Cause an Implicit Commit”.
The correct way to use LOCK TABLES
and
UNLOCK TABLES
with transactional tables,
such as InnoDB
tables, is to begin a
transaction with SET AUTOCOMMIT = 0
(not
START TRANSACTION
) followed by
LOCK TABLES
, and to not call
UNLOCK TABLES
until you commit the
transaction explicitly. When you call LOCK
TABLES
, InnoDB
internally takes
its own table lock, and MySQL takes its own table lock.
InnoDB
releases its internal table lock
at the next commit, but for MySQL to release its table lock,
you have to call UNLOCK TABLES
. You
should not have AUTOCOMMIT = 1
, because
then InnoDB
releases its internal table
lock immediately after the call of LOCK
TABLES
, and deadlocks can very easily happen.
InnoDB
does not acquire the internal
table lock at all if AUTOCOMMIT=1
, to
help old applications avoid unnecessary deadlocks.
ROLLBACK
does not release table locks.
FLUSH TABLES WITH READ LOCK
acquires a
global read lock and not table locks, so it is not subject
to the same behavior as LOCK TABLES
and
UNLOCK TABLES
with respect to table
locking and implicit commits. See Section 12.5.5.2, “FLUSH
Syntax”.
You can safely use KILL
to terminate a thread
that is waiting for a table lock. See Section 12.5.5.3, “KILL
Syntax”.
You should not lock any tables that you are
using with INSERT DELAYED
because in that
case the INSERT
is performed by a separate
thread.
For some operations, system tables in the
mysql
database must be accessed. For example,
the HELP
statement requires the contents of
the server-side help tables, and
CONVERT_TZ()
might need to read
the time zone tables. Before MySQL 5.1.17, to perform such
operations while a LOCK TABLES
statement is
in effect, you must also lock the requisite system tables
explicitly or a lock error occurs. As of 5.1.17, the server
implicitly locks the system tables for reading as necessary so
that you need not lock them explicitly. These tables are treated
as just described:
mysql.help_category mysql.help_keyword mysql.help_relation mysql.help_topic mysql.proc mysql.time_zone mysql.time_zone_leap_second mysql.time_zone_name mysql.time_zone_transition mysql.time_zone_transition_type
If you want to explicitly place a WRITE
lock
on any of those tables with a LOCK TABLES
statement, the table must be the only one locked; no other table
can be locked with the same statement.
Normally, you do not need to lock tables, because all single
UPDATE
statements are atomic; no other thread
can interfere with any other currently executing SQL statement.
However, there are a few cases when locking tables may provide
an advantage:
If you are going to run many operations on a set of
MyISAM
tables, it is much faster to lock
the tables you are going to use. Locking
MyISAM
tables speeds up inserting,
updating, or deleting on them because MySQL does not flush
the key cache for the locked tables until UNLOCK
TABLES
is called. Normally, the key cache is
flushed after each SQL statement.
The downside to locking the tables is that no thread can
update a READ
-locked table (including the
one holding the lock) and no thread can access a
WRITE
-locked table other than the one
holding the lock.
If you are using tables for a non-transactional storage
engine, you must use LOCK TABLES
if you
want to ensure that no other thread modifies the tables
between a SELECT
and an
UPDATE
. The example shown here requires
LOCK TABLES
to execute safely:
LOCK TABLES trans READ, customer WRITE; SELECT SUM(value) FROM trans WHERE customer_id=some_id
; UPDATE customer SET total_value=sum_from_previous_statement
WHERE customer_id=some_id
; UNLOCK TABLES;
Without LOCK TABLES
, it is possible that
another thread might insert a new row in the
trans
table between execution of the
SELECT
and UPDATE
statements.
You can avoid using LOCK TABLES
in many cases
by using relative updates (UPDATE customer SET
)
or the value
=value
+new_value
LAST_INSERT_ID()
function. See Section 1.8.5.2, “Transactions and Atomic Operations”.
You can also avoid locking tables in some cases by using the
user-level advisory lock functions
GET_LOCK()
and
RELEASE_LOCK()
. These locks are
saved in a hash table in the server and implemented with
pthread_mutex_lock()
and
pthread_mutex_unlock()
for high speed. See
Section 11.11.4, “Miscellaneous Functions”.
See Section 7.3.1, “Internal Locking Methods”, for more information on locking policy.
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE }
This statement sets the transaction isolation level for the next transaction, globally, or for the current session.
The default behavior of SET TRANSACTION
is to
set the isolation level for the next (not yet started)
transaction. If you use the GLOBAL
keyword,
the statement sets the default transaction level globally for
all new connections created from that point on. Existing
connections are unaffected. You need the
SUPER
privilege to do this. Using the
SESSION
keyword sets the default transaction
level for all future transactions performed on the current
connection.
For descriptions of each InnoDB
transaction
isolation level, see
Section 13.5.10.3, “InnoDB
and TRANSACTION ISOLATION
LEVEL
”.
InnoDB
supports each of these levels in MySQL
5.1. The default level is REPEATABLE
READ
.
In MySQL 5.1, if the READ
COMMITTED
isolation level is used or the
innodb_locks_unsafe_for_binlog
system
variable is enabled, there is no InnoDB
gap
locking except in constraint checking. Also, record locks for
non-matching rows are released after MySQL has evaluated the
WHERE
condition.
To set the initial default global isolation level for
mysqld, use the
--transaction-isolation
option. See
Section 5.1.2, “Command Options”.
A detailed list of the types supported by MySQL and the various storage engines follows:
READ UNCOMMITTED
SELECT
statements are performed in a
non-locking fashion, but a possible earlier version of a
record might be used. Thus, using this isolation level, such
reads are not consistent. This is also called a “dirty
read.” Otherwise, this isolation level works like
READ COMMITTED
.
READ COMMITTED
A somewhat Oracle-like isolation level. All SELECT
... FOR UPDATE
and SELECT ... LOCK IN
SHARE MODE
statements lock only the index records,
not the gaps before them, and thus allow the free insertion
of new records next to locked records.
UPDATE
and DELETE
statements using a unique index with a unique search
condition lock only the index record found, not the gap
before it. In range-type UPDATE
and
DELETE
statements,
InnoDB
must set next-key or gap locks and
block insertions by other users to the gaps covered by the
range. This is necessary because “phantom rows”
must be blocked for MySQL replication and recovery to work.
Consistent reads behave as in Oracle: Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. See Section 13.5.10.4, “Consistent Non-Locking Read”.
As of MySQL 5.1, if you use READ
COMMITTED
(which is equivalent to
innodb_locks_unsafe_for_binlog
in 5.0),
you must use row-based binary
logging.
REPEATABLE READ
This is the default isolation level of
InnoDB
. SELECT ... FOR
UPDATE
, SELECT ... LOCK IN SHARE
MODE
, UPDATE
, and
DELETE
statements that use a unique index
with a unique search condition lock only the index record
found, not the gap before it. With other search conditions,
these operations employ next-key locking, locking the index
range scanned with next-key or gap locks, and block new
insertions by other users.
In consistent reads, there is an important difference from
the READ COMMITTED
isolation level: All
consistent reads within the same transaction read the same
snapshot established by the first read. This convention
means that if you issue several plain
SELECT
statements within the same
transaction, these SELECT
statements are
consistent also with respect to each other. See
Section 13.5.10.4, “Consistent Non-Locking Read”.
SERIALIZABLE
This level is like REPEATABLE READ
, but
InnoDB
implicitly converts all plain
SELECT
statements to SELECT ...
LOCK IN SHARE MODE
.
Support for XA transactions is available for the
InnoDB
storage engine. The MySQL XA
implementation is based on the X/Open CAE document
Distributed Transaction Processing: The XA
Specification. This document is published by The
Open Group and available at
http://www.opengroup.org/public/pubs/catalog/c193.htm.
Limitations of the current XA implementation are described in
Section D.5, “Restrictions on XA Transactions”.
On the client side, there are no special requirements. The XA
interface to a MySQL server consists of SQL statements that
begin with the XA
keyword. MySQL client
programs must be able to send SQL statements and to understand
the semantics of the XA statement interface. They do not need be
linked against a recent client library. Older client libraries
also will work.
Currently, among the MySQL Connectors, MySQL Connector/J 5.0.0 supports XA directly (by means of a class interface that handles the XA SQL statement interface for you).
XA supports distributed transactions; that is, the ability to allow multiple separate transactional resources to participate in a global transaction. Transactional resources often are RDBMSs but may be other kinds of resources.
A global transaction involves several actions that are
transactional in themselves, but that all must either complete
successfully as a group, or all be rolled back as a group. In
essence, this extends ACID properties “up a level”
so that multiple ACID transactions can be executed in concert as
components of a global operation that also has ACID properties.
(However, for a distributed transaction, you must use the
SERIALIZABLE
isolation level to achieve ACID
properties. It is enough to use REPEATABLE
READ
for a non-distributed transaction, but not for a
distributed transaction.)
Some examples of distributed transactions:
An application may act as an integration tool that combines a messaging service with an RDBMS. The application makes sure that transactions dealing with message sending, retrieval, and processing that also involve a transactional database all happen in a global transaction. You can think of this as “transactional email.”
An application performs actions that involve different database servers, such as a MySQL server and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must happen as part of a global transaction, rather than as separate transactions local to each server.
A bank keeps account information in an RDBMS and distributes and receives money via automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the ATM and database resources to ensure overall consistency of financial transactions.
Applications that use global transactions involve one or more Resource Managers and a Transaction Manager:
A Resource Manager (RM) provides access to transactional resources. A database server is one kind of resource manager. It must be possible to either commit or roll back transactions managed by the RM.
A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It communicates with the RMs that handle each of these transactions. The individual transactions within a global transaction are “branches” of the global transaction. Global transactions and their branches are identified by a naming scheme described later.
The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager that handles XA transactions within a global transaction. A client program that connects to the MySQL server acts as the Transaction Manager.
To carry out a global transaction, it is necessary to know which components are involved, and bring each component to a point when it can be committed or rolled back. Depending on what each component reports about its ability to succeed, they must all commit or roll back as an atomic group. That is, either all components must commit, or all components musts roll back. To manage a global transaction, it is necessary to take into account that any component or the connecting network might fail.
The process for executing a global transaction uses two-phase commit (2PC). This takes place after the actions performed by the branches of the global transaction have been executed.
In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit. Typically, this means each RM that manages a branch records the actions for the branch in stable storage. The branches indicate whether they are able to do this, and these results are used for the second phase.
In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated when they were prepared that they will be able to commit, all branches are told to commit. If any branch indicated when it was prepared that it will not be able to commit, all branches are told to roll back.
In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction Manager finds that a global transaction consists of only one transactional resource (that is, a single branch), that resource can be told to prepare and commit at the same time.
To perform XA transactions in MySQL, use the following statements:
XA {START|BEGIN}xid
[JOIN|RESUME] XA ENDxid
[SUSPEND [FOR MIGRATE]] XA PREPARExid
XA COMMITxid
[ONE PHASE] XA ROLLBACKxid
XA RECOVER
For XA START
, the JOIN
and RESUME
clauses are not supported.
For XA END
the SUSPEND [FOR
MIGRATE]
clause is not supported.
Each XA statement begins with the XA
keyword, and most of them require an
xid
value. An
xid
is an XA transaction
identifier. It indicates which transaction the statement
applies to. xid
values are supplied
by the client, or generated by the MySQL server. An
xid
value has from one to three
parts:
xid
:gtrid
[,bqual
[,formatID
]]
gtrid
is a global transaction
identifier, bqual
is a branch
qualifier, and formatID
is a number
that identifies the format used by the
gtrid
and
bqual
values. As indicated by the
syntax, bqual
and
formatID
are optional. The default
bqual
value is
''
if not given. The default
formatID
value is 1 if not given.
gtrid
and
bqual
must be string literals, each
up to 64 bytes (not characters) long.
gtrid
and
bqual
can be specified in several
ways. You can use a quoted string ('ab'
),
hex string (0x6162
,
X'ab'
), or bit value
(b'
).
nnnn
'
formatID
is an unsigned integer.
The gtrid
and
bqual
values are interpreted in
bytes by the MySQL server's underlying XA support routines.
However, while an SQL statement containing an XA statement is
being parsed, the server works with some specific character
set. To be safe, write gtrid
and
bqual
as hex strings.
xid
values typically are generated
by the Transaction Manager. Values generated by one TM must be
different from values generated by other TMs. A given TM must
be able to recognize its own xid
values in a list of values returned by the XA
RECOVER
statement.
MySQL Enterprise For expert advice on XA Distributed Transaction Support subscribe to the MySQL Enterprise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
XA START
starts an XA transaction with the given
xid
xid
value. Each XA transaction must
have a unique xid
value, so the
value must not currently be used by another XA transaction.
Uniqueness is assessed using the
gtrid
and
bqual
values. All following XA
statements for the XA transaction must be specified using the
same xid
value as that given in the
XA START
statement. If you use any of those
statements but specify an xid
value
that does not correspond to some existing XA transaction, an
error occurs.
One or more XA transactions can be part of the same global
transaction. All XA transactions within a given global
transaction must use the same gtrid
value in the xid
value. For this
reason, gtrid
values must be
globally unique so that there is no ambiguity about which
global transaction a given XA transaction is part of. The
bqual
part of the
xid
value must be different for
each XA transaction within a global transaction. (The
requirement that bqual
values be
different is a limitation of the current MySQL XA
implementation. It is not part of the XA specification.)
The XA RECOVER
statement returns
information for those XA transactions on the MySQL server that
are in the PREPARED
state. (See
Section 12.4.7.2, “XA Transaction States”.) The output includes a row for
each such XA transaction on the server, regardless of which
client started it.
XA RECOVER
output rows look like this (for
an example xid
value consisting of
the parts 'abc'
, 'def'
,
and 7
):
mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+
The output columns have the following meanings:
formatID
is the
formatID
part of the
transaction xid
gtrid_length
is the length in bytes of
the gtrid
part of the
xid
bqual_length
is the length in bytes of
the bqual
part of the
xid
data
is the concatenation of the
gtrid
and
bqual
parts of the
xid
An XA transaction progresses through the following states:
Use XA START
to start an XA transaction
and put it in the ACTIVE
state.
For an ACTIVE
XA transaction, issue the
SQL statements that make up the transaction, and then
issue an XA END
statement. XA
END
puts the transaction in the
IDLE
state.
For an IDLE
XA transaction, you can
issue either an XA PREPARE
statement or
an XA COMMIT ... ONE PHASE
statement:
XA PREPARE
puts the transaction in
the PREPARED
state. An XA
RECOVER
statement at this point will include
the transaction's xid
value
in its output, because XA RECOVER
lists all XA transactions that are in the
PREPARED
state.
XA COMMIT ... ONE PHASE
prepares
and commits the transaction. The
xid
value will not be
listed by XA RECOVER
because the
transaction terminates.
For a PREPARED
XA transaction, you can
issue an XA COMMIT
statement to commit
and terminate the transaction, or XA
ROLLBACK
to roll back and terminate the
transaction.
Here is a simple XA transaction that inserts a row into a table as part of a global transaction:
mysql>XA START 'xatest';
Query OK, 0 rows affected (0.00 sec) mysql>INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec) mysql>XA END 'xatest';
Query OK, 0 rows affected (0.00 sec) mysql>XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec) mysql>XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)
Within the context of a given client connection, XA
transactions and local (non-XA) transactions are mutually
exclusive. For example, if XA START
has
been issued to begin an XA transaction, a local transaction
cannot be started until the XA transaction has been committed
or rolled back. Conversely, if a local transaction has been
started with START TRANSACTION
, no XA
statements can be used until the transaction has been
committed or rolled back.
Note that if an XA transaction is in the
ACTIVE
state, you cannot issue any
statements that cause an implicit commit. That would violate
the XA contract because you could not roll back the XA
transaction. You will receive the following error if you try
to execute such a statement:
ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed when global transaction is in the ACTIVE state
Statements to which the preceding remark applies are listed at Section 12.4.3, “Statements That Cause an Implicit Commit”.
MySQL account information is stored in the tables of the
mysql
database. This database and the access
control system are discussed extensively in
Chapter 5, MySQL Server Administration, which you should
consult for additional details.
Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.
MySQL Enterprise In a production environment it is always prudent to examine any changes to users' accounts. The MySQL Enterprise Monitor provides notification whenever users' privileges are altered. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
CREATE USERuser
[IDENTIFIED BY [PASSWORD] 'password
'] [,user
[IDENTIFIED BY [PASSWORD] 'password
']] ...
The CREATE USER
statement creates new MySQL
accounts. To use it, you must have the global CREATE
USER
privilege or the INSERT
privilege for the mysql
database. For each
account, CREATE USER
creates a new row in
the mysql.user
table that has no
privileges. An error occurs if the account already exists.
Each account is named using the same format as for the
GRANT
statement; for example,
'jeffrey'@'localhost'
. If you specify only
the username part of the account name, a hostname part of
'%'
is used. For additional information
about specifying account names, see Section 12.5.1.3, “GRANT
Syntax”.
The account can be given a password with the optional
IDENTIFIED BY
clause. The
user
value and the password are
given the same way as for the GRANT
statement. In particular, to specify the password in plain
text, omit the PASSWORD
keyword. To specify
the password as the hashed value as returned by the
PASSWORD()
function, include
the PASSWORD
keyword. See
Section 12.5.1.3, “GRANT
Syntax”.
This statement may be recorded in a history file such as
~/.mysql_history
, which means that
plaintext passwords may be read by anyone having read access
to such files.
DROP USERuser
[,user
] ...
The DROP USER
statement removes one or more
MySQL accounts. It removes privilege rows for the account from
all grant tables. To use this statement, you must have the
global CREATE USER
privilege or the
DELETE
privilege for the
mysql
database. Each account is named using
the same format as for the GRANT
statement;
for example, 'jeffrey'@'localhost'
. If you
specify only the username part of the account name, a hostname
part of '%'
is used. For additional
information about specifying account names, see
Section 12.5.1.3, “GRANT
Syntax”.
With DROP USER
, you can remove an account
and its privileges as follows:
DROP USER user
;
DROP USER
does not automatically close
any open user sessions. Rather, in the event that a user
with an open session is dropped, the statement does not take
effect until that user's session is closed. Once the session
is closed, the user is dropped, and that user's next attempt
to log in will fail. This is by design.
DROP USER
does not automatically delete or
invalidate any database objects that the user created. This
applies to tables, views, stored routines, triggers, and
events.
GRANTpriv_type
[(column_list
)] [,priv_type
[(column_list
)]] ... ON [object_type
] { * | *.* |db_name
.* |db_name.tbl_name
|tbl_name
|db_name
.routine_name
} TOuser
[IDENTIFIED BY [PASSWORD] 'password
'] [,user
[IDENTIFIED BY [PASSWORD] 'password
']] ... [REQUIRE NONE | [{SSL| X509}] [CIPHER 'cipher
' [AND]] [ISSUER 'issuer
' [AND]] [SUBJECT 'subject
']] [WITHwith_option
[with_option
] ...]object_type
= TABLE | FUNCTION | PROCEDUREwith_option
= GRANT OPTION | MAX_QUERIES_PER_HOURcount
| MAX_UPDATES_PER_HOURcount
| MAX_CONNECTIONS_PER_HOURcount
| MAX_USER_CONNECTIONScount
The GRANT
statement enables system
administrators to create MySQL user accounts and to grant
rights to accounts. To use GRANT
, you must
have the GRANT OPTION
privilege, and you
must have the privileges that you are granting. The
REVOKE
statement is related and enables
administrators to remove account privileges. See
Section 12.5.1.5, “REVOKE
Syntax”.
MySQL Enterprise For automated notification of users with inappropriate privileges, subscribe to the MySQL Enterprise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
MySQL account information is stored in the tables of the
mysql
database. This database and the
access control system are discussed extensively in
Chapter 5, MySQL Server Administration, which you should
consult for additional details.
Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.
If the grant tables hold privilege rows that contain
mixed-case database or table names and the
lower_case_table_names
system variable is
set to a non-zero value, REVOKE
cannot be
used to revoke these privileges. It will be necessary to
manipulate the grant tables directly.
(GRANT
will not create such rows when
lower_case_table_names
is set, but such
rows might have been created prior to setting the variable.)
Privileges can be granted at several levels. The examples
shown here include no IDENTIFIED BY
'
clause for
brevity, but you should include one if the account does not
already exist to avoid creating an account with no password.
password
'
Global level
Global privileges apply to all databases on a given
server. These privileges are stored in the
mysql.user
table. GRANT ALL ON
*.*
and REVOKE ALL ON *.*
grant and revoke only global privileges.
GRANT ALL ON *.* TO 'someuser'@'somehost'; GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';
Database level
Database privileges apply to all objects in a given
database. These privileges are stored in the
mysql.db
and
mysql.host
tables. GRANT ALL
ON
and
db_name
.*REVOKE ALL ON
grant and
revoke only database privileges.
db_name
.*
GRANT ALL ON mydb.* TO 'someuser'@'somehost'; GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';
Table level
Table privileges apply to all columns in a given table.
These privileges are stored in the
mysql.tables_priv
table. GRANT
ALL ON
and
db_name.tbl_name
REVOKE ALL ON
grant and revoke only table privileges.
db_name.tbl_name
GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost'; GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';
If you specify tbl_name
rather
than db_name.tbl_name
, the statement
applies to tbl_name
in the
default database.
Column level
Column privileges apply to single columns in a given
table. These privileges are stored in the
mysql.columns_priv
table. When using
REVOKE
, you must specify the same
columns that were granted. The column or columns for which
the privileges are to be granted must be enclosed within
parentheses.
GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';
Routine level
The CREATE ROUTINE
, ALTER
ROUTINE
, EXECUTE
, and
GRANT
privileges apply to stored
routines (functions and procedures). They can be granted
at the global and database levels. Also, except for
CREATE ROUTINE
, these privileges can be
granted at the routine level for individual routines and
are stored in the mysql.procs_priv
table.
GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost'; GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';
The object_type
clause should be
specified as TABLE
,
FUNCTION
, or PROCEDURE
when the following object is a table, a stored function, or a
stored procedure.
If you specify ON *
and you have
not selected a default database, the
privileges granted are global.
For the GRANT
and REVOKE
statements, priv_type
can be
specified as any of the following:
Privilege | Meaning |
ALL [PRIVILEGES] | Grants all privileges at specified access level except GRANT
OPTION |
ALTER | Enables use of ALTER TABLE |
ALTER ROUTINE | Enables stored routines to be altered or dropped |
CREATE | Enables use of CREATE TABLE |
CREATE ROUTINE | Enables creation of stored routines |
CREATE TEMPORARY TABLES | Enables use of CREATE TEMPORARY TABLE |
CREATE USER | Enables use of CREATE USER , DROP
USER , RENAME USER , and
REVOKE ALL PRIVILEGES . |
CREATE VIEW | Enables use of CREATE VIEW |
DELETE | Enables use of DELETE |
DROP | Enables use of DROP TABLE |
EVENT | Enables creation of events for the event scheduler |
EXECUTE | Enables the user to run stored routines |
FILE | Enables use of SELECT ... INTO OUTFILE and
LOAD DATA INFILE |
INDEX | Enables use of CREATE INDEX and DROP
INDEX |
INSERT | Enables use of INSERT |
LOCK TABLES | Enables use of LOCK TABLES on tables for which you
have the SELECT privilege |
PROCESS | Enables the user to see all processes with SHOW
PROCESSLIST |
REFERENCES | Not implemented |
RELOAD | Enables use of FLUSH |
REPLICATION CLIENT | Enables the user to ask where slave or master servers are |
REPLICATION SLAVE | Needed for replication slaves (to read binary log events from the master) |
SELECT | Enables use of SELECT |
SHOW DATABASES | SHOW DATABASES shows all databases |
SHOW VIEW | Enables use of SHOW CREATE VIEW |
SHUTDOWN | Enables use of mysqladmin shutdown |
SUPER | Enables use of CHANGE MASTER ,
KILL , PURGE MASTER
LOGS , and SET GLOBAL
statements, the mysqladmin debug
command; allows you to connect (once) even if
max_connections is reached |
TRIGGER | Enables the user to create or drop triggers |
UPDATE | Enables use of UPDATE |
USAGE | Synonym for “no privileges” |
GRANT OPTION | Enables privileges to be granted |
The EVENT
and TRIGGER
privileges were added in MySQL 5.1.6. A trigger is associated
with a table, so to create or drop a trigger, you must have
the TRIGGER
privilege for the table, not
the trigger. (Before MySQL 5.1.6, the SUPER
privilege was required to create or drop triggers.)
The REFERENCES
privilege currently is
unused.
USAGE
can be specified when you want to
create a user that has no privileges.
Use SHOW GRANTS
to determine what
privileges an account has. See Section 12.5.4.17, “SHOW GRANTS
Syntax”.
You can assign global privileges by using ON
*.*
syntax or database-level privileges by using
ON
syntax. If you specify db_name
.*ON *
and you have
selected a default database, the privileges are granted in
that database.
The FILE
, PROCESS
,
RELOAD
, REPLICATION
CLIENT
, REPLICATION SLAVE
,
SHOW DATABASES
,
SHUTDOWN
, SUPER
, and
CREATE USER
privileges are administrative
privileges that can only be granted globally (using
ON *.*
syntax).
Other privileges can be granted globally or at more specific levels.
The priv_type
values that you can
specify for a table are SELECT
,
INSERT
, UPDATE
,
DELETE
, CREATE
,
DROP
, GRANT OPTION
,
INDEX
, ALTER
,
CREATE VIEW
, SHOW VIEW
and TRIGGER
.
The priv_type
values that you can
specify for a column (that is, when you use a
column_list
clause) are
SELECT
, INSERT
, and
UPDATE
.
The priv_type
values that you can
specify at the routine level are ALTER
ROUTINE
, EXECUTE
, and
GRANT OPTION
. CREATE
ROUTINE
is not a routine-level privilege because you
must have this privilege to create a routine in the first
place.
For the global, database, table, and routine levels,
GRANT ALL
assigns only the privileges that
exist at the level you are granting. For example,
GRANT ALL ON
is a
database-level statement, so it does not grant any global-only
privileges such as db_name
.*FILE
.
MySQL allows you to grant privileges even on database objects
that do not exist. In such cases, the privileges to be granted
must include the CREATE
privilege.
This behavior is by design, and is
intended to enable the database administrator to prepare user
accounts and privileges for database objects that are to be
created at a later time.
MySQL does not automatically revoke any privileges when you drop a table or database. However, if you drop a routine, any routine-level privileges granted for that routine are revoked.
The “_
” and
“%
” wildcards are allowed
when specifying database names in GRANT
statements that grant privileges at the global or database
levels. This means, for example, that if you want to use a
“_
” character as part of a
database name, you should specify it as
“\_
” in the
GRANT
statement, to prevent the user from
being able to access additional databases matching the
wildcard pattern; for example, GRANT ... ON
`foo\_bar`.* TO ...
.
To accommodate granting rights to users from arbitrary hosts,
MySQL supports specifying the user
value in the form
.
If a user_name
@host_name
user_name
or
host_name
value is legal as an
unquoted identifier, you need not quote it. However, quotes
are necessary to specify a
user_name
string containing special
characters (such as “-
”), or a
host_name
string containing special
characters or wildcard characters (such as
“%
”); for example,
'test-user'@'test-hostname'
. Quote the
username and hostname separately.
You can specify wildcards in the hostname. For example,
applies to user_name
@'%.loc.gov'user_name
for any host
in the loc.gov
domain, and
applies to user_name
@'144.155.166.%'user_name
for any host
in the 144.155.166
class C subnet.
The simple form user_name
is a
synonym for
.
user_name
@'%'
MySQL does not support wildcards in
usernames. Anonymous users are defined by inserting
entries with User=''
into the
mysql.user
table or by creating a user with
an empty name with the GRANT
statement:
GRANT ALL ON test.* TO ''@'localhost' ...
When specifying quoted values, quote database, table, column,
and routine names as identifiers, using backticks
(“`
”). Quote hostnames,
usernames, and passwords as strings, using single quotes
(“'
”).
If you allow anonymous users to connect to the MySQL server,
you should also grant privileges to all local users as
.
Otherwise, the anonymous user account for
user_name
@localhostlocalhost
in the
mysql.user
table (created during MySQL
installation) is used when named users try to log in to the
MySQL server from the local machine. For details, see
Section 5.4.4, “Access Control, Stage 1: Connection Verification”.
You can determine whether this applies to you by executing the following query, which lists any anonymous users:
SELECT Host, User FROM mysql.user WHERE User='';
If you want to delete the local anonymous user account to avoid the problem just described, use these statements:
DELETE FROM mysql.user WHERE Host='localhost' AND User=''; FLUSH PRIVILEGES;
GRANT
supports hostnames up to 60
characters long. Database, table, column, and routine names
can be up to 64 characters. Usernames can be up to 16
characters.
The allowable length for usernames cannot be
changed by altering the mysql.user
table,
and attempting to do so results in unpredictable behavior
which may even make it impossible for users to log in to the
MySQL server. You should never alter any of the
tables in the mysql
database in any
manner whatsoever except by means of the procedure
prescribed by MySQL AB that is described in
Section 4.4.8, “mysql_upgrade — Check Tables for MySQL Upgrade”.
The privileges for a table, column, or routine are formed
additively as the logical OR
of the privileges at each of the privilege levels. For
example, if the mysql.user
table specifies
that a user has a global SELECT
privilege,
the privilege cannot be denied by an entry at the database,
table, or column level.
The privileges for a column can be calculated as follows:
global privileges OR (database privileges AND host privileges) OR table privileges OR column privileges OR routine privileges
In most cases, you grant rights to a user at only one of the privilege levels, so life is not normally this complicated. The details of the privilege-checking procedure are presented in Section 5.4, “The MySQL Access Privilege System”.
If you grant privileges for a username/hostname combination
that does not exist in the mysql.user
table, an entry is added and remains there until deleted with
a DELETE
statement. In other words,
GRANT
may create user
table entries, but REVOKE
does not remove
them; you must do that explicitly using DROP
USER
or DELETE
.
If the account does not already exist,
GRANT
creates it. In the case that you
create a new account or if you have global grant privileges,
the account's password is set to the password specified by the
IDENTIFIED BY
clause, if one is given. If
the account already had a password, it is replaced by the new
one.
If you create a new user but do not specify an
IDENTIFIED BY
clause, the user has no
password. This is very insecure. However, you can enable the
NO_AUTO_CREATE_USER
SQL mode to prevent
GRANT
from creating a new user if it
would otherwise do so, unless IDENTIFIED
BY
is given to provide the new user a non-empty
password.
MySQL Enterprise The MySQL Enterprise Monitor specifically guards against user accounts with no passwords. To find out more, see http://www.mysql.com/products/enterprise/advisors.html.
Passwords can also be set with the SET
PASSWORD
statement. See
Section 12.5.1.6, “SET PASSWORD
Syntax”.
In the IDENTIFIED BY
clause, the password
should be given as the literal password value. It is
unnecessary to use the
PASSWORD()
function as it is
for the SET PASSWORD
statement. For
example:
GRANT ... IDENTIFIED BY 'mypass';
If you do not want to send the password in clear text and you
know the hashed value that
PASSWORD()
would return for
the password, you can specify the hashed value preceded by the
keyword PASSWORD
:
GRANT ... IDENTIFIED BY PASSWORD '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';
In a C program, you can get the hashed value by using the
make_scrambled_password()
C API function.
If you grant privileges for a database, an entry in the
mysql.db
table is created if needed. If all
privileges for the database are removed with
REVOKE
, this entry is deleted.
The SHOW DATABASES
privilege enables the
account to see database names by issuing the SHOW
DATABASE
statement. Accounts that do not have this
privilege see only databases for which they have some
privileges, and cannot use the statement at all if the server
was started with the --skip-show-database
option.
MySQL Enterprise
The SHOW DATABASES
privilege should be
granted only to users who need to see all the databases on a
MySQL server. Subscribers to the MySQL Enterprise Monitor
are alerted when servers are started without the
--skip-show-database
option. For more
information, see
http://www.mysql.com/products/enterprise/advisors.html.
If a user has no privileges for a table, the table name is not
displayed when the user requests a list of tables (for
example, with a SHOW TABLES
statement).
The WITH GRANT OPTION
clause gives the user
the ability to give to other users any privileges the user has
at the specified privilege level. You should be careful to
whom you give the GRANT OPTION
privilege,
because two users with different privileges may be able to
join privileges!
You cannot grant another user a privilege which you yourself
do not have; the GRANT OPTION
privilege
enables you to assign only those privileges which you yourself
possess.
Be aware that when you grant a user the GRANT
OPTION
privilege at a particular privilege level,
any privileges the user possesses (or may be given in the
future) at that level can also be granted by that user to
other users. Suppose that you grant a user the
INSERT
privilege on a database. If you then
grant the SELECT
privilege on the database
and specify WITH GRANT OPTION
, that user
can give to other users not only the SELECT
privilege, but also INSERT
. If you then
grant the UPDATE
privilege to the user on
the database, the user can grant INSERT
,
SELECT
, and UPDATE
.
For a non-administrative user, you should not grant the
ALTER
privilege globally or for the
mysql
database. If you do that, the user
can try to subvert the privilege system by renaming tables!
The MAX_QUERIES_PER_HOUR
,
count
MAX_UPDATES_PER_HOUR
, and
count
MAX_CONNECTIONS_PER_HOUR
options limit the
number of queries, updates, and logins a user can perform
during any given one-hour period. (Queries for which results
are served from the query cache do not count against the
count
MAX_QUERIES_PER_HOUR
limit.) If
count
is 0
(the
default), this means that there is no limitation for that
user.
The MAX_USER_CONNECTIONS
option limits the
maximum number of simultaneous connections that the account
can make. If count
count
is
0
(the default), the
max_user_connections
system variable
determines the number of simultaneous connections for the
account.
Note: To specify any of these resource-limit options for an
existing user without affecting existing privileges, use
GRANT USAGE ON *.* ... WITH MAX_...
.
See Section 5.5.4, “Limiting Account Resources”.
MySQL can check X509 certificate attributes in addition to the
usual authentication that is based on the username and
password. To specify SSL-related options for a MySQL account,
use the REQUIRE
clause of the
GRANT
statement. (For background
information on the use of SSL with MySQL, see
Section 5.5.7, “Using SSL for Secure Connections”.)
There are a number of different possibilities for limiting connection types for a given account:
REQUIRE NONE
indicates that the account
has no SSL or X509 requirements. This is the default if no
SSL-related REQUIRE
options are
specified. Unencrypted connections are allowed if the
username and password are valid. However, encrypted
connections can also be used, at the client's option, if
the client has the proper certificate and key files. That
is, the client need not specify any SSL command options,
in which case the connection will be unencrypted. To use
an encrypted connection, the client must specify either
the --ssl-ca
option, or all three of the
--ssl-ca
, --ssl-key
, and
--ssl-cert
options.
The REQUIRE SSL
option tells the server
to allow only SSL-encrypted connections for the account.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE SSL;
To connect, the client must specify the
--ssl-ca
option, and may additionally
specify the --ssl-key
and
--ssl-cert
options.
REQUIRE X509
means that the client must
have a valid certificate but that the exact certificate,
issuer, and subject do not matter. The only requirement is
that it should be possible to verify its signature with
one of the CA certificates.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE X509;
To connect, the client must specify the
--ssl-ca
, --ssl-key
, and
--ssl-cert
options. This is also true for
ISSUER
and SUBJECT
because those REQUIRE
options imply
X509
.
REQUIRE ISSUER
'
places the
restriction on connection attempts that the client must
present a valid X509 certificate issued by CA
issuer
''
. If
the client presents a certificate that is valid but has a
different issuer, the server rejects the connection. Use
of X509 certificates always implies encryption, so the
issuer
'SSL
option is unnecessary in this case.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/ O=MySQL Finland AB/CN=Tonu Samuel/[email protected]';
Note that the
'
value should be entered as a single string.
issuer
'
REQUIRE SUBJECT
'
places the
restriction on connection attempts that the client must
present a valid X509 certificate containing the subject
subject
'subject
. If the client presents
a certificate that is valid but has a different subject,
the server rejects the connection.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/ O=MySQL demo client certificate/ CN=Tonu Samuel/[email protected]';
Note that the
'
value should be entered as a single string.
subject
'
REQUIRE CIPHER
'
is needed to
ensure that ciphers and key lengths of sufficient strength
are used. SSL itself can be weak if old algorithms using
short encryption keys are used. Using this option, you can
ask that a specific cipher method is used to allow a
connection.
cipher
'
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';
The SUBJECT
, ISSUER
, and
CIPHER
options can be combined in the
REQUIRE
clause like this:
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost' IDENTIFIED BY 'goodsecret' REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/ O=MySQL demo client certificate/ CN=Tonu Samuel/[email protected]' AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/ O=MySQL Finland AB/CN=Tonu Samuel/[email protected]' AND CIPHER 'EDH-RSA-DES-CBC3-SHA';
The AND
keyword is optional between
REQUIRE
options.
The order of the options does not matter, but no option can be specified twice.
When mysqld starts, all privileges are read into memory. For details, see Section 5.4.6, “When Privilege Changes Take Effect”.
Note that if you are using table, column, or routine privileges for even one user, the server examines table, column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of queries, updates, or connections for any users, the server must monitor these values.
The biggest differences between the standard SQL and MySQL
versions of GRANT
are:
In MySQL, privileges are associated with the combination of a hostname and username and not with only a username.
Standard SQL does not have global or database-level privileges, nor does it support all the privilege types that MySQL supports.
MySQL does not support the standard SQL
UNDER
privilege.
Standard SQL privileges are structured in a hierarchical
manner. If you remove a user, all privileges the user has
been granted are revoked. This is also true in MySQL if
you use DROP USER
. See
Section 12.5.1.2, “DROP USER
Syntax”.
In standard SQL, when you drop a table, all privileges for
the table are revoked. In standard SQL, when you revoke a
privilege, all privileges that were granted based on that
privilege are also revoked. In MySQL, privileges can be
dropped only with explicit REVOKE
statements or by manipulating values stored in the MySQL
grant tables.
In MySQL, it is possible to have the
INSERT
privilege for only some of the
columns in a table. In this case, you can still execute
INSERT
statements on the table,
provided that you omit those columns for which you do not
have the INSERT
privilege. The omitted
columns are set to their implicit default values if strict
SQL mode is not enabled. In strict mode, the statement is
rejected if any of the omitted columns have no default
value. (Standard SQL requires you to have the
INSERT
privilege on all columns.)
Section 5.1.7, “SQL Modes”, discusses strict mode.
Section 10.1.4, “Data Type Default Values”, discusses implicit
default values.
RENAME USERold_user
TOnew_user
[,old_user
TOnew_user
] ...
The RENAME USER
statement renames existing
MySQL accounts. To use it, you must have the global
CREATE USER
privilege or the
UPDATE
privilege for the
mysql
database. An error occurs if any old
account does not exist or any new account exists. Each account
is named using the same format as for the
GRANT
statement; for example,
'jeffrey'@'localhost'
. If you specify only
the username part of the account name, a hostname part of
'%'
is used. For additional information
about specifying account names, see Section 12.5.1.3, “GRANT
Syntax”.
RENAME USER
does not automatically migrate
any database objects that the user created, nor does it
migrate any privileges that the user had prior to the
renaming. This applies to tables, views, stored routines,
triggers, and events.
REVOKEpriv_type
[(column_list
)] [,priv_type
[(column_list
)]] ... ON [object_type
] { * | *.* |db_name
.* |db_name.tbl_name
|tbl_name
|db_name
.routine_name
} FROMuser
[,user
] ... REVOKE ALL PRIVILEGES, GRANT OPTION FROMuser
[,user
] ...
The REVOKE
statement enables system
administrators to revoke privileges from MySQL accounts. Each
account is named using the same format as for the
GRANT
statement; for example,
'jeffrey'@'localhost'
. If you specify only
the username part of the account name, a hostname part of
'%'
is used. For additional information
about specifying account names, see Section 12.5.1.3, “GRANT
Syntax”.
To use the first REVOKE
syntax, you must
have the GRANT OPTION
privilege, and you
must have the privileges that you are revoking.
For details on the levels at which privileges exist, the
allowable priv_type
values, and the
syntax for specifying users and passwords, see
Section 12.5.1.3, “GRANT
Syntax”
If the grant tables hold privilege rows that contain
mixed-case database or table names and the
lower_case_table_names
system variable is
set to a non-zero value, REVOKE
cannot be
used to revoke these privileges. It will be necessary to
manipulate the grant tables directly.
(GRANT
will not create such rows when
lower_case_table_names
is set, but such
rows might have been created prior to setting the variable.)
To revoke all privileges, use the following syntax, which drops all global, database-, table-, column-, and routine-level privileges for the named user or users:
REVOKE ALL PRIVILEGES, GRANT OPTION FROMuser
[,user
] ...
To use this REVOKE
syntax, you must have
the global CREATE USER
privilege or the
UPDATE
privilege for the
mysql
database.
REVOKE
removes privileges, but does not
drop user
table entries. You must do that
explicitly using DELETE
or DROP
USER
(see Section 12.5.1.2, “DROP USER
Syntax”).
SET PASSWORD [FORuser
] = { PASSWORD('some password
') | OLD_PASSWORD('some password
') | 'encrypted password
' }
The SET PASSWORD
statement assigns a
password to an existing MySQL user account.
If the password is specified using the
PASSWORD()
or
OLD_PASSWORD()
function, the
literal text of the password should be given. If the password
is specified without using either function, the password
should be the already-encrypted password value as returned by
PASSWORD()
.
With no FOR
clause, this statement sets the
password for the current user. Any client that has connected
to the server using a non-anonymous account can change the
password for that account.
With a FOR
clause, this statement sets the
password for a specific account on the current server host.
Only clients that have the UPDATE
privilege
for the mysql
database can do this. The
user
value should be given in
format, where user_name
@host_name
user_name
and
host_name
are exactly as they are
listed in the User
and
Host
columns of the
mysql.user
table entry. For example, if you
had an entry with User
and
Host
column values of
'bob'
and '%.loc.gov'
,
you would write the statement like this:
SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass
');
That is equivalent to the following statements:
UPDATE mysql.user SET Password=PASSWORD('newpass
')
WHERE User='bob' AND Host='%.loc.gov';
FLUSH PRIVILEGES;
If you are connecting to a MySQL 4.1 or later server using a
pre-4.1 client program, do not use the preceding
SET PASSWORD
or UPDATE
statement without reading
Section 5.4.8, “Password Hashing as of MySQL 4.1”, first. The password
format changed in MySQL 4.1, and under certain circumstances
it is possible that if you change your password, you might
not be able to connect to the server afterward.
You can see which account the server authenticated you as by
executing SELECT CURRENT_USER()
.
MySQL Enterprise For automated notification of users without passwords, subscribe to the MySQL Enterprise Monitor. For more information see http://www.mysql.com/products/enterprise/advisors.html.
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLEtbl_name
[,tbl_name
] ...
ANALYZE TABLE
analyzes and stores the key
distribution for a table. During the analysis, the table is
locked with a read lock for MyISAM
. For
InnoDB
the table is locked with a write
lock. This statement works with MyISAM
, and
InnoDB
tables. For
MyISAM
tables, this statement is equivalent
to using myisamchk --analyze.
For more information on how the analysis works
withinInnoDB
, see
Section 13.5.16, “Restrictions on InnoDB
Tables”.
MySQL Enterprise For expert advice on optimizing tables subscribe to the MySQL Enterprise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
MySQL uses the stored key distribution to decide the order in which tables should be joined when you perform a join on something other than a constant. In addition, key distributions can be used when deciding which indexes to use for a specific table within a query.
This statement requires SELECT
and
INSERT
privileges for the table.
ANALYZE TABLE
is not supported for
partitioned tables.
ANALYZE TABLE
returns a result set with the
following columns:
Column | Value |
Table | The table name |
Op | Always analyze |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
You can check the stored key distribution with the
SHOW INDEX
statement. See
Section 12.5.4.18, “SHOW INDEX
Syntax”.
If the table has not changed since the last ANALYZE
TABLE
statement, the table is not analyzed again.
By default, ANALYZE TABLE
statements are
written to the binary log so that such statements used on a
MySQL server acting as a replication master will be replicated
to replication slaves. Logging can be suppressed with the
optional NO_WRITE_TO_BINLOG
keyword or its
alias LOCAL
.
BACKUP TABLEtbl_name
[,tbl_name
] ... TO '/path/to/backup/directory
'
This statement is deprecated. We are working on a better replacement for it that will provide online backup capabilities. In the meantime, the mysqlhotcopy script can be used instead.
BACKUP TABLE
copies to the backup directory
the minimum number of table files needed to restore the table,
after flushing any buffered changes to disk. The statement
works only for MyISAM
tables. It copies the
.frm
definition and
.MYD
data files. The
.MYI
index file can be rebuilt from those
two files. The directory should be specified as a full
pathname. To restore the table, use RESTORE
TABLE
.
During the backup, a read lock is held for each table, one at
time, as they are being backed up. If you want to back up
several tables as a snapshot (preventing any of them from
being changed during the backup operation), issue a
LOCK TABLES
statement first, to obtain a
read lock for all tables in the group.
BACKUP TABLE
returns a result set with the
following columns:
Column | Value |
Table | The table name |
Op | Always backup |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
CHECK TABLEtbl_name
[,tbl_name
] ... [option
] ...option
= {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
CHECK TABLE
checks a table or tables for
errors. CHECK TABLE
works for
MyISAM
, InnoDB
, and
ARCHIVE
tables. Starting with MySQL 5.1.9,
CHECK
is also valid for
CSV
tables, see
Section 13.11, “The CSV
Storage Engine”. For
MyISAM
tables, the key statistics are
updated as well.
CHECK TABLE
can also check views for
problems, such as tables that are referenced in the view
definition that no longer exist.
CHECK TABLE
is not supported for
partitioned tables.
CHECK TABLE
returns a result set with the
following columns:
Column | Value |
Table | The table name |
Op | Always check |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
Note that the statement might produce many rows of information
for each checked table. The last row has a
Msg_type
value of status
and the Msg_text
normally should be
OK
. If you don't get OK
,
or Table is already up to date
you should
normally run a repair of the table. See
Section 6.4, “Table Maintenance and Crash Recovery”. Table is already
up to date
means that the storage engine for the
table indicated that there was no need to check the table.
The FOR UPGRADE
option checks whether the
named tables are compatible with the current version of MySQL.
This option was added in MySQL 5.1.7. With FOR
UPGRADE
, the server checks each table to determine
whether there have been any incompatible changes in any of the
table's data types or indexes since the table was created. If
not, the check succeeds. Otherwise, if there is a possible
incompatibility, the server runs a full check on the table
(which might take some time). If the full check succeeds, the
server marks the table's .frm
file with
the current MySQL version number. Marking the
.frm
file ensures that further checks for
the table with the same version of the server will be fast.
Incompatibilities might occur because the storage format for a data type has changed or because its sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct problems that would be worse than an incompatibility between releases.
Currently, FOR UPGRADE
discovers these
incompatibilities:
The indexing order for end-space in
TEXT
columns for
InnoDB
and MyISAM
tables changed between MySQL 4.1 and 5.0.
The storage method of the new DECIMAL
data type changed between MySQL 5.0.3 and 5.0.5.
As of MySQL 5.1.25, if your table was created by a
different version of the MySQL server than the one you are
currently running, FOR UPGRADE
indicates that the table has an .frm
file with an incompatible version. In this case, the
result set returned by CHECK TABLE
contains a line with a Msg_type
value
of error
and a
Msg_text
value of Table
upgrade required. Please do "REPAIR TABLE
`
tbl_name
`" to fix
it!
The other check options that can be given are shown in the
following table. These options are passed to the storage
engine, which may use them or not. MyISAM
uses them; they are ignored for InnoDB
tables and views.
Type | Meaning |
QUICK | Do not scan the rows to check for incorrect links. |
FAST | Check only tables that have not been closed properly. |
CHANGED | Check only tables that have been changed since the last check or that have not been closed properly. |
MEDIUM | Scan rows to verify that deleted links are valid. This also calculates a key checksum for the rows and verifies this with a calculated checksum for the keys. |
EXTENDED | Do a full key lookup for all keys for each row. This ensures that the table is 100% consistent, but takes a long time. |
If none of the options QUICK
,
MEDIUM
, or EXTENDED
are
specified, the default check type for dynamic-format
MyISAM
tables is MEDIUM
.
This has the same result as running myisamchk
--medium-check tbl_name
on the table. The default check type also is
MEDIUM
for static-format
MyISAM
tables, unless
CHANGED
or FAST
is
specified. In that case, the default is
QUICK
. The row scan is skipped for
CHANGED
and FAST
because
the rows are very seldom corrupted.
You can combine check options, as in the following example that does a quick check on the table to determine whether it was closed properly:
CHECK TABLE test_table FAST QUICK;
In some cases, CHECK TABLE
changes the
table. This happens if the table is marked as
“corrupted” or “not closed
properly” but CHECK TABLE
does not
find any problems in the table. In this case, CHECK
TABLE
marks the table as okay.
If a table is corrupted, it is most likely that the problem is in the indexes and not in the data part. All of the preceding check types check the indexes thoroughly and should thus find most errors.
If you just want to check a table that you assume is okay, you
should use no check options or the QUICK
option. The latter should be used when you are in a hurry and
can take the very small risk that QUICK
does not find an error in the data file. (In most cases, under
normal usage, MySQL should find any error in the data file. If
this happens, the table is marked as “corrupted”
and cannot be used until it is repaired.)
FAST
and CHANGED
are
mostly intended to be used from a script (for example, to be
executed from cron) if you want to check
tables from time to time. In most cases,
FAST
is to be preferred over
CHANGED
. (The only case when it is not
preferred is when you suspect that you have found a bug in the
MyISAM
code.)
EXTENDED
is to be used only after you have
run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is
very unlikely if a normal check has succeeded.
Use of CHECK TABLE ... EXTENDED
might
influence the execution plan generated by the query optimizer.
Some problems reported by CHECK TABLE
cannot be corrected automatically:
Found row where the auto_increment column has the
value 0
.
This means that you have a row in the table where the
AUTO_INCREMENT
index column contains
the value 0. (It is possible to create a row where the
AUTO_INCREMENT
column is 0 by
explicitly setting the column to 0 with an
UPDATE
statement.)
This is not an error in itself, but could cause trouble if
you decide to dump the table and restore it or do an
ALTER TABLE
on the table. In this case,
the AUTO_INCREMENT
column changes value
according to the rules of
AUTO_INCREMENT
columns, which could
cause problems such as a duplicate-key error.
To get rid of the warning, simply execute an
UPDATE
statement to set the column to
some value other than 0.
If CHECK TABLE
finds a problem for an
InnoDB
table, the server shuts down to
prevent error propagation. Details of the error will be
written to the error log.
CHECKSUM TABLEtbl_name
[,tbl_name
] ... [ QUICK | EXTENDED ]
CHECKSUM TABLE
reports a table checksum.
With QUICK
, the live table checksum is
reported if it is available, or NULL
otherwise. This is very fast. A live checksum is enabled by
specifying the CHECKSUM=1
table option when
you create the table; currently, this is supported only for
MyISAM
tables. See
Section 12.1.10, “CREATE TABLE
Syntax”.
With EXTENDED
, the entire table is read row
by row and the checksum is calculated. This can be very slow
for large tables.
If neither QUICK
nor
EXTENDED
is specified, MySQL returns a live
checksum if the table storage engine supports it and scans the
table otherwise.
For a non-existent table, CHECKSUM TABLE
returns NULL
and generates a warning.
The checksum value depends on the table row format. If the row
format changes, the checksum also changes. For example, the
storage format for VARCHAR
changed between
MySQL 4.1 and 5.0, so if a 4.1 table is upgraded to MySQL 5.0,
the checksum value may change.
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLEtbl_name
[,tbl_name
] ...
OPTIMIZE TABLE
should be used if you have
deleted a large part of a table or if you have made many
changes to a table with variable-length rows (tables that have
VARCHAR
, VARBINARY
,
BLOB
, or TEXT
columns).
Deleted rows are maintained in a linked list and subsequent
INSERT
operations reuse old row positions.
You can use OPTIMIZE TABLE
to reclaim the
unused space and to defragment the data file.
This statement requires SELECT
and
INSERT
privileges for the table.
OPTIMIZE TABLE
is not supported for
partitioned tables. See
Section 21.3.3, “Maintenance of Partitions”, for information
about alternatives.
In most setups, you need not run OPTIMIZE
TABLE
at all. Even if you do a lot of updates to
variable-length rows, it is not likely that you need to do
this more than once a week or month and only on certain
tables.
OPTIMIZE TABLE
works
only for MyISAM
,
InnoDB
, and ARCHIVE
tables. It does not work for tables
created using any other storage engine, including
NDB
Disk Data tables.
In MySQL Cluster NDB 6.3.7 and later MySQL Cluster NDB 6.3
releases, OPTIMIZE TABLE
is supported for
dynamic columns of in-memory NDB
tables.
The performance of OPTIMIZE
on Cluster
tables can be tuned by adjusting the value of the
ndb_optimization_delay
system variable,
which controls the number of milliseconds to wait between
processing batches of rows by OPTIMIZE
TABLE
. See
Section 20.14.11, “Previous MySQL Cluster Issues Resolved in MySQL 5.1”, for more
information.
Beginning with MySQL Cluster NDB 6.3.8, OPTIMIZE
TABLE
can be interrupted by (for example) killing
the SQL thread performing the OPTIMIZE
operation.
For MyISAM
tables, OPTIMIZE
TABLE
works as follows:
If the table has deleted or split rows, repair the table.
If the index pages are not sorted, sort them.
If the table's statistics are not up to date (and the repair could not be accomplished by sorting the index), update them.
For InnoDB
tables, OPTIMIZE
TABLE
is mapped to ALTER TABLE
,
which rebuilds the table to update index statistics and free
unused space in the clustered index.
You can make OPTIMIZE TABLE
work on other
storage engines by starting mysqld with the
--skip-new
or --safe-mode
option. In this case, OPTIMIZE TABLE
is
just mapped to ALTER TABLE
.
OPTIMIZE TABLE
returns a result set with
the following columns:
Column | Value |
Table | The table name |
Op | Always optimize |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
Note that MySQL locks the table during the time
OPTIMIZE TABLE
is running.
By default, OPTIMIZE TABLE
statements are
written to the binary log so that such statements used on a
MySQL server acting as a replication master will be replicated
to replication slaves. Logging can be suppressed with the
optional NO_WRITE_TO_BINLOG
keyword or its
alias LOCAL
.
OPTIMIZE TABLE
does not sort R-tree
indexes, such as spatial indexes on POINT
columns. (Bug#23578)
REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLEtbl_name
[,tbl_name
] ... [QUICK] [EXTENDED] [USE_FRM]
REPAIR TABLE
repairs a possibly corrupted
table. By default, it has the same effect as
myisamchk --recover
tbl_name
. REPAIR
TABLE
works for MyISAM
and for
ARCHIVE
tables. Starting with MySQL 5.1.9,
REPAIR
is also valid for
CSV
tables. See
Section 13.4, “The MyISAM
Storage Engine”, and
Section 13.10, “The ARCHIVE
Storage Engine”, and
Section 13.11, “The CSV
Storage Engine”
This statement requires SELECT
and
INSERT
privileges for the table.
REPAIR TABLE
is not supported for
partitioned tables. See
Section 21.3.3, “Maintenance of Partitions”, for information
about alternatives.
Normally, you should never have to run this statement.
However, if disaster strikes, REPAIR TABLE
is very likely to get back all your data from a
MyISAM
table. If your tables become
corrupted often, you should try to find the reason for it, to
eliminate the need to use REPAIR TABLE
. See
Section B.1.4.2, “What to Do If MySQL Keeps Crashing”, and
Section 13.4.4, “MyISAM
Table Problems”.
It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss. Possible causes include but are not limited to filesystem errors.
If the server dies during a REPAIR TABLE
operation, it is essential after restarting it that you
immediately execute another REPAIR TABLE
statement for the table before performing any other
operations on it. (It is always a good idea to start by
making a backup.) In the worst case, you might have a new
clean index file without information about the data file,
and then the next operation you perform could overwrite the
data file. This is an unlikely but possible scenario.
REPAIR TABLE
returns a result set with the
following columns:
Column | Value |
Table | The table name |
Op | Always repair |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
The REPAIR TABLE
statement might produce
many rows of information for each repaired table. The last row
has a Msg_type
value of
status
and Msg_test
normally should be OK
. If you do not get
OK
, you should try repairing the table with
myisamchk --safe-recover. (REPAIR
TABLE
does not yet implement all the options of
myisamchk.) With myisamchk
--safe-recover, you can also use options that
REPAIR TABLE
does not support, such as
--max-record-length
.
If QUICK
is given, REPAIR
TABLE
tries to repair only the index tree. This type
of repair is like that done by myisamchk --recover
--quick.
If you use EXTENDED
, MySQL creates the
index row by row instead of creating one index at a time with
sorting. This type of repair is like that done by
myisamchk --safe-recover.
There is also a USE_FRM
mode available for
REPAIR TABLE
. Use this if the
.MYI
index file is missing or if its
header is corrupted. In this mode, MySQL re-creates the
.MYI
file using information from the
.frm
file. This kind of repair cannot be
done with myisamchk.
Use this mode only if you cannot use
regular REPAIR
modes. The
.MYI
header contains important table
metadata (in particular, current
AUTO_INCREMENT
value and Delete
link
) that are lost in REPAIR ...
USE_FRM
. Don't use USE_FRM
if
the table is compressed because this information is also
stored in the .MYI
file.
If USE_FRM
is not
used, then a REPAIR TABLE
checks the table
to see whether an upgrade is required and if it is necessary
performs the upgrade, following the same rules as
CHECK TABLE ... FOR UPGRADE
. See
Section 12.5.2.3, “CHECK TABLE
Syntax”, for more information. As of
MySQL 5.1.25, REPAIR TABLE
without
USE_FRM
upgrades the
.frm
file to the current version.
As of MySQL 5.1.25, if you use USE_FRM
and your table was created by a different version of the
MySQL server than the one you are currently running,
REPAIR TABLE
will not attempt to repair
the table. In this case, the result set returned by
REPAIR TABLE
contains a line with a
Msg_type
value of
error
and a Msg_text
value of Failed repairing incompatible .FRM
file
.
Prior to MySQL 5.1.25, do not use
USE_FRM
if your table was created by a
different version of the MySQL server. Doing so risks the
loss of all rows in the table. It is particularly dangerous
to use USE_FRM
after the server returns
this message:
Table upgrade required. Please do
"REPAIR TABLE `tbl_name
`" to fix it!
By default, REPAIR TABLE
statements are
written to the binary log so that such statements used on a
MySQL server acting as a replication master will be replicated
to replication slaves. Logging can be suppressed with the
optional NO_WRITE_TO_BINLOG
keyword or its
alias LOCAL
.
RESTORE TABLEtbl_name
[,tbl_name
] ... FROM '/path/to/backup/directory
'
RESTORE TABLE
restores the table or tables
from a backup that was made with BACKUP
TABLE
. The directory should be specified as a full
pathname.
Existing tables are not overwritten; if you try to restore
over an existing table, an error occurs. Just as for
BACKUP TABLE
, RESTORE
TABLE
currently works only for
MyISAM
tables. Restored tables are not
replicated from master to slave.
The backup for each table consists of its
.frm
format file and
.MYD
data file. The restore operation
restores those files, and then uses them to rebuild the
.MYI
index file. Restoring takes longer
than backing up due to the need to rebuild the indexes. The
more indexes the table has, the longer it takes.
RESTORE TABLE
returns a result set with the
following columns:
Column | Value |
Table | The table name |
Op | Always restore |
Msg_type | One of status , error ,
info , or warning |
Msg_text | The message |
SETvariable_assignment
[,variable_assignment
] ...variable_assignment
:user_var_name
=expr
| [GLOBAL | SESSION]system_var_name
=expr
| [@@global. | @@session. | @@]system_var_name
=expr
The SET
statement assigns values to different
types of variables that affect the operation of the server or
your client. Older versions of MySQL employed SET
OPTION
, but this syntax is deprecated in favor of
SET
without OPTION
.
This section describes use of SET
for
assigning values to system variables or user variables. For
general information about these types of variables, see
Section 5.1.3, “System Variables”,
Section 5.1.4, “Session System Variables”, and
Section 8.4, “User-Defined Variables”. System variables also can be
set at server startup, as described in
Section 5.1.5, “Using System Variables”.
Some variants of SET
syntax are used in other
contexts:
SET CHARACTER SET
and SET
NAMES
assign values to character set and collation
variables associated with the connection to the server.
SET ONESHOT
is used for replication.
These variants are described later in this section.
SET PASSWORD
assigns account passwords.
See Section 12.5.1.6, “SET PASSWORD
Syntax”.
SET TRANSACTION ISOLATION LEVEL
sets the
isolation level for transaction processing. See
Section 12.4.6, “SET TRANSACTION
Syntax”.
SET
is used within stored routines to
assign values to local routine variables. See
Section 23.2.7.2, “Variable SET
Statement”.
The following discussion shows the different
SET
syntaxes that you can use to set
variables. The examples use the =
assignment
operator, but the :=
operator also is
allowable.
A user variable is written as
@
and can
be set as follows:
var_name
SET @var_name
=expr
;
Many system variables are dynamic and can be changed while the
server runs by using the SET
statement. For a
list, see Section 5.1.5.2, “Dynamic System Variables”. To change
a system variable with SET
, refer to it as
var_name
, optionally preceded by a
modifier:
To indicate explicitly that a variable is a global variable,
precede its name by GLOBAL
or
@@global.
. The SUPER
privilege is required to set global variables.
To indicate explicitly that a variable is a session
variable, precede its name by SESSION
,
@@session.
, or @@
.
Setting a session variable requires no special privilege,
but a client can change only its own session variables, not
those of any other client.
LOCAL
and @@local.
are
synonyms for SESSION
and
@@session.
.
If no modifier is present, SET
changes
the session variable.
MySQL Enterprise The MySQL Enterprise Monitor makes extensive use of system variables to determine the state of your server. For more information see http://www.mysql.com/products/enterprise/advisors.html.
A SET
statement can contain multiple variable
assignments, separated by commas. If you set several system
variables, the most recent GLOBAL
or
SESSION
modifier in the statement is used for
following variables that have no modifier specified.
Examples:
SET sort_buffer_size=10000; SET @@local.sort_buffer_size=10000; SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000; SET @@sort_buffer_size=1000000; SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;
The @@
syntax for system variables is supported for compatibility with
some other database systems.
var_name
If you change a session system variable, the value remains in effect until your session ends or until you change the variable to a different value. The change is not visible to other clients.
If you change a global system variable, the value is remembered
and used for new connections until the server restarts. (To make
a global system variable setting permanent, you should set it in
an option file.) The change is visible to any client that
accesses that global variable. However, the change affects the
corresponding session variable only for clients that connect
after the change. The global variable change does not affect the
session variable for any client that is currently connected (not
even that of the client that issues the SET
GLOBAL
statement).
To prevent incorrect usage, MySQL produces an error if you use
SET GLOBAL
with a variable that can only be
used with SET SESSION
or if you do not
specify GLOBAL
(or
@@global.
) when setting a global variable.
To set a SESSION
variable to the
GLOBAL
value or a GLOBAL
value to the compiled-in MySQL default value, use the
DEFAULT
keyword. For example, the following
two statements are identical in setting the session value of
max_join_size
to the global value:
SET max_join_size=DEFAULT; SET @@session.max_join_size=@@global.max_join_size;
Not all system variables can be set to
DEFAULT
. In such cases, use of
DEFAULT
results in an error.
You can refer to the values of specific global or sesson system
variables in expressions by using one of the
@@
-modifiers. For example, you can retrieve
values in a SELECT
statement like this:
SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;
When you refer to a system variable in an expression as
@@
(that
is, when you do not specify var_name
@@global.
or
@@session.
), MySQL returns the session value
if it exists and the global value otherwise. (This differs from
SET @@
, which always refers
to the session value.)
var_name
=
value
Suffixes for specifying a value multiplier can be used when
setting a variable at server startup, but not to set the value
with SET
at runtime. On the other hand, with
SET
you can assign a variable's value using
an expression, which is not true when you set a variable at
server startup. For example, the first of the following lines is
legal at server startup, but the second is not:
shell>mysql --max_allowed_packet=16M
shell>mysql --max_allowed_packet=16*1024*1024
Conversely, the second of the following lines is legal at runtime, but the first is not:
mysql>SET GLOBAL max_allowed_packet=16M;
mysql>SET GLOBAL max_allowed_packet=16*1024*1024;
To display system variables names and values, use the
SHOW VARIABLES
statement. (See
Section 12.5.4.31, “SHOW VARIABLES
Syntax”.)
The following list describes SET
options that
have non-standard syntax (that is, options that are not set with
syntax).
name
=
value
CHARACTER SET
{
charset_name
|
DEFAULT}
This maps all strings from and to the client with the given
mapping. You can add new mappings by editing
sql/convert.cc
in the MySQL source
distribution. SET CHARACTER SET
sets
three session system variables:
character_set_client
and
character_set_results
are set to the
given character set, and
character_set_connection
to the value of
character_set_database
. See
Section 9.1.4, “Connection Character Sets and Collations”.
The default mapping can be restored by using the value
DEFAULT
. The default depends on the
server configuration.
ucs2
cannot be used as a client character
set, which means that it does not work for SET
CHARACTER SET
.
NAMES {'
charset_name
'
[COLLATE 'collation_name
'] |
DEFAULT}
SET NAMES
sets the three session system
variables character_set_client
,
character_set_connection
, and
character_set_results
to the given
character set. Setting
character_set_connection
to
charset_name
also sets
collation_connection
to the default
collation for charset_name
. The optional
COLLATE
clause may be used to specify a
collation explicitly. See
Section 9.1.4, “Connection Character Sets and Collations”.
The default mapping can be restored by using a value of
DEFAULT
. The default depends on the
server configuration.
ucs2
cannot be used as a client character
set, which means that it does not work for SET
NAMES
.
This option is a modifier, not a variable. It can be used to
influence the effect of variables that set the character
set, the collation, and the time zone.
ONE_SHOT
is primarily used for
replication purposes: mysqlbinlog uses
SET ONE_SHOT
to modify temporarily the
values of character set, collation, and time zone variables
to reflect at rollforward what they were originally.
ONE_SHOT
is for internal use only and is
deprecated for MySQL 5.0 and up.
You cannot use ONE_SHOT
with other than
the allowed set of variables; if you try, you get an error
like this:
mysql> SET ONE_SHOT max_allowed_packet = 1;
ERROR 1382 (HY000): The 'SET ONE_SHOT' syntax is reserved for purposes
internal to the MySQL server
If ONE_SHOT
is used with the allowed
variables, it changes the variables as requested, but only
for the next non-SET
statement. After
that, the server resets all character set, collation, and
time zone-related system variables to their previous values.
Example:
mysql>SET ONE_SHOT character_set_connection = latin5;
mysql>SET ONE_SHOT collation_connection = latin5_turkish_ci;
mysql>SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+ | Variable_name | Value | +--------------------------+-------------------+ | character_set_connection | latin5 | | collation_connection | latin5_turkish_ci | +--------------------------+-------------------+ mysql>SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+ | Variable_name | Value | +--------------------------+-------------------+ | character_set_connection | latin1 | | collation_connection | latin1_swedish_ci | +--------------------------+-------------------+
SHOW AUTHORS
SyntaxSHOW CHARACTER SET
SyntaxSHOW COLLATION
SyntaxSHOW COLUMNS
SyntaxSHOW CONTRIBUTORS
SyntaxSHOW CREATE DATABASE
SyntaxSHOW CREATE EVENT
SHOW CREATE PROCEDURE
and SHOW CREATE
FUNCTION
SyntaxSHOW CREATE TABLE
SyntaxSHOW CREATE TRIGGER
SyntaxSHOW CREATE VIEW
SyntaxSHOW DATABASES
SyntaxSHOW ENGINE
SyntaxSHOW ENGINES
SyntaxSHOW ERRORS
SyntaxSHOW EVENTS
SHOW GRANTS
SyntaxSHOW INDEX
SyntaxSHOW INNODB STATUS
SyntaxSHOW OPEN TABLES
SyntaxSHOW PLUGINS
SyntaxSHOW PRIVILEGES
SyntaxSHOW PROCEDURE CODE
and SHOW FUNCTION
CODE
SyntaxSHOW PROCEDURE STATUS
and SHOW FUNCTION
STATUS
SyntaxSHOW PROCESSLIST
SyntaxSHOW SCHEDULER STATUS
SyntaxSHOW STATUS
SyntaxSHOW TABLE STATUS
SyntaxSHOW TABLES
SyntaxSHOW TRIGGERS
SyntaxSHOW VARIABLES
SyntaxSHOW WARNINGS
Syntax
SHOW
has many forms that provide information
about databases, tables, columns, or status information about
the server. This section describes those following:
SHOW AUTHORS SHOW CHARACTER SET [like_or_where
] SHOW COLLATION [like_or_where
] SHOW [FULL] COLUMNS FROMtbl_name
[FROMdb_name
] [like_or_where
] SHOW CONTRIBUTORS SHOW CREATE DATABASEdb_name
SHOW CREATE EVENTevent_name
SHOW CREATE FUNCTIONfuncname
SHOW CREATE PROCEDUREprocname
SHOW CREATE TABLEtbl_name
SHOW CREATE TRIGGERtrigger_name
SHOW CREATE VIEWview_name
SHOW DATABASES [like_or_where
] SHOW ENGINEengine_name
{STATUS | MUTEX} SHOW [STORAGE] ENGINES SHOW ERRORS [LIMIT [offset
,]row_count
] SHOW [FULL] EVENTS SHOW FUNCTION CODEsp_name
SHOW FUNCTION STATUS [like_or_where
] SHOW GRANTS FORuser
SHOW INDEX FROMtbl_name
[FROMdb_name
] SHOW INNODB STATUS SHOW OPEN TABLES [FROMdb_name
] [like_or_where
] SHOW PLUGINS SHOW PROCEDURE CODEsp_name
SHOW PROCEDURE STATUS [like_or_where
] SHOW PRIVILEGES SHOW [FULL] PROCESSLIST SHOW SCHEDULER STATUS SHOW [GLOBAL | SESSION] STATUS [like_or_where
] SHOW TABLE STATUS [FROMdb_name
] [like_or_where
] SHOW TABLES [FROMdb_name
] [like_or_where
] SHOW TRIGGERS [FROMdb_name
] [like_or_where
] SHOW [GLOBAL | SESSION] VARIABLES [like_or_where
] SHOW WARNINGS [LIMIT [offset
,]row_count
]like_or_where
: LIKE 'pattern
' | WHEREexpr
The SHOW
statement also has forms that
provide information about replication master and slave servers
and are described in Section 12.6, “Replication Statements”:
SHOW BINARY LOGS SHOW BINLOG EVENTS SHOW MASTER STATUS SHOW SLAVE HOSTS SHOW SLAVE STATUS
If the syntax for a given SHOW
statement
includes a LIKE
'
part,
pattern
''
is a
string that can contain the SQL
“pattern
'%
” and
“_
” wildcard characters. The
pattern is useful for restricting statement output to matching
values.
Several SHOW
statements also accept a
WHERE
clause that provides more flexibility
in specifying which rows to display. See
Section 27.27, “Extensions to SHOW
Statements”.
Many MySQL APIs (such as PHP) allow you to treat the result
returned from a SHOW
statement as you would a
result set from a SELECT
; see
Chapter 29, APIs and Libraries, or your API documentation for more
information. In addition, you can work in SQL with results from
queries on tables in the INFORMATION_SCHEMA
database, which you cannot easily do with results from
SHOW
statements. See
Chapter 27, INFORMATION_SCHEMA
Tables.
SHOW AUTHORS
The SHOW AUTHORS
statement displays
information about the people who work on MySQL. For each
author, it displays Name
,
Location
, and Comment
values.
This statement was added in MySQL 5.1.3.
SHOW CHARACTER SET [LIKE 'pattern
' | WHEREexpr
]
The SHOW CHARACTER SET
statement shows all
available character sets. The
LIKE
clause, if present,
indicates which character set names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”. For example:
mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+
The Maxlen
column shows the maximum number
of bytes required to store one character.
SHOW COLLATION [LIKE 'pattern
' | WHEREexpr
]
The output from SHOW COLLATION
includes all
available character sets. The
LIKE
clause, if present,
indicates which collation names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”. For example:
mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+
The Default
column indicates whether a
collation is the default for its character set.
Compiled
indicates whether the character
set is compiled into the server. Sortlen
is
related to the amount of memory required to sort strings
expressed in the character set.
SHOW [FULL] COLUMNS FROMtbl_name
[FROMdb_name
] [LIKE 'pattern
' | WHEREexpr
]
SHOW COLUMNS
displays information about the
columns in a given table. It also works for views. The
LIKE
clause, if present,
indicates which column names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)
If the data types differ from what you expect them to be based
on a CREATE TABLE
statement, note that
MySQL sometimes changes data types when you create or alter a
table. The conditions under which this occurs are described in
Section 12.1.10.1, “Silent Column Specification Changes”.
The FULL
keyword causes the output to
include the column collation and comments, as well as the
privileges you have for each column.
You can use db_name.tbl_name
as an
alternative to the
syntax. In other
words, these two statements are equivalent:
tbl_name
FROM
db_name
mysql>SHOW COLUMNS FROM mytable FROM mydb;
mysql>SHOW COLUMNS FROM mydb.mytable;
SHOW COLUMNS
displays the following values
for each table column:
Field
indicates the column name.
Type
indicates the column data type.
Collation
indicates the collation for
non-binary string columns, or NULL
for
other columns. This value is displayed only if you use the
FULL
keyword.
The Null
field contains
YES
if NULL
values can
be stored in the column, NO
if not.
The Key
field indicates whether the column
is indexed:
If Key
is empty, the column either is
not indexed or is indexed only as a secondary column in a
multiple-column, non-unique index.
If Key
is PRI
, the
column is a PRIMARY KEY
or is one of
the columns in a multiple-column PRIMARY
KEY
.
If Key
is UNI
, the
column is the first column of a unique-valued index that
cannot contain NULL
values.
If Key
is MUL
,
multiple occurrences of a given value are allowed within
the column. The column is the first column of a non-unique
index or a unique-valued index that can contain
NULL
values.
If more than one of the Key
values applies
to a given column of a table, Key
displays
the one with the highest priority, in the order
PRI
, UNI
,
MUL
.
A UNIQUE
index may be displayed as
PRI
if it cannot contain
NULL
values and there is no
PRIMARY KEY
in the table. A
UNIQUE
index may display as
MUL
if several columns form a composite
UNIQUE
index; although the combination of
the columns is unique, each column can still hold multiple
occurrences of a given value.
The Default
field indicates the default
value that is assigned to the column.
The Extra
field contains any additional
information that is available about a given column. In the
example shown, the Extra
field indicates
that the Id
column was created with the
AUTO_INCREMENT
keyword.
Privileges
indicates the privileges you
have for the column. This value is displayed only if you use
the FULL
keyword.
Comment
indicates any comment the column
has. This value is displayed only if you use the
FULL
keyword.
SHOW FIELDS
is a synonym for SHOW
COLUMNS
. You can also list a table's columns with
the mysqlshow db_name
tbl_name
command.
The DESCRIBE
statement provides information
similar to SHOW COLUMNS
. See
Section 12.3.1, “DESCRIBE
Syntax”.
The SHOW CREATE TABLE
, SHOW TABLE
STATUS
, and SHOW INDEX
statements
also provide information about tables. See
Section 12.5.4, “SHOW
Syntax”.
SHOW CONTRIBUTORS
The SHOW CONTRIBUTORS
statement displays
information about the people who contribute to MySQL source or
to causes that MySQL AB supports. For each contributor, it
displays Name
, Location
,
and Comment
values.
This statement was added in MySQL 5.1.12.
SHOW CREATE {DATABASE | SCHEMA} db_name
Shows the CREATE DATABASE
statement that
creates the given database. SHOW CREATE
SCHEMA
is a synonym for SHOW CREATE
DATABASE
.
mysql>SHOW CREATE DATABASE test\G
*************************** 1. row *************************** Database: test Create Database: CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ mysql>SHOW CREATE SCHEMA test\G
*************************** 1. row *************************** Database: test Create Database: CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */
SHOW CREATE DATABASE
quotes table and
column names according to the value of the
SQL_QUOTE_SHOW_CREATE
option. See
Section 12.5.3, “SET
Syntax”.
SHOW CREATE EVENT event_name
This statement displays the CREATE EVENT
statement needed to re-create a given event. For example
(using the same event e_daily
defined and
then altered in Section 12.5.4.16, “SHOW EVENTS
”):
mysql> SHOW CREATE EVENT test.e_daily\G *************************** 1. row *************************** Event: e_daily Create Event: CREATE EVENT e_daily ON SCHEDULE EVERY 1 DAY STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR ENABLE COMMENT 'Saves total number of sessions and clears the table once per day.' DO BEGIN INSERT INTO site_activity.totals (when, total) SELECT CURRENT_TIMESTAMP, COUNT(*) FROM site_activity.sessions; DELETE FROM site_activity.sessions; END character_set_client: latin1 collation_connection: latin1_swedish_ci Database Collation: latin1_swedish_ci
character_set_client
is the session value
of the character_set_client
system variable
when the event was created.
collation_connection
is the session value
of the collation_connection
system variable
when the event was created. Database
Collation
is the collation of the database with
which the event is associated. These columns were added in
MySQL 5.1.21.
Note that the output reflects the current status of the event
(ENABLE
) rather than the status with which
it was created.
This statement was implemented in MySQL 5.1.6.
SHOW CREATE {PROCEDURE | FUNCTION} sp_name
These statements are MySQL extensions. Similar to
SHOW CREATE TABLE
, they return the exact
string that can be used to re-create the named routine. The
statements require that you be the owner of the routine or
have SELECT
access to the
mysql.proc
table. If you do not have
privileges for the routine itself, the value displayed for the
Create Procedure
or Create
Function
field will be NULL
.
mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
Function: hello
sql_mode:
Create Function: CREATE FUNCTION `test`.`hello`(s CHAR(20)) »
RETURNS CHAR(50)
RETURN CONCAT('Hello, ',s,'!')
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client
is the session value
of the character_set_client
system variable
when the routine was created.
collation_connection
is the session value
of the collation_connection
system variable
when the routine was created. Database
Collation
is the collation of the database with
which the routine is associated. These columns were added in
MySQL 5.1.21.
SHOW CREATE TABLE tbl_name
Shows the CREATE TABLE
statement that
creates the given table. This statement also works with views.
mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
Table: t
Create Table: CREATE TABLE t (
id INT(11) default NULL auto_increment,
s char(60) default NULL,
PRIMARY KEY (id)
) ENGINE=MyISAM
SHOW CREATE TABLE
quotes table and column
names according to the value of the
SQL_QUOTE_SHOW_CREATE
option. See
Section 12.5.3, “SET
Syntax”.
SHOW CREATE TRIGGER trigger_name
This statement shows a CREATE TRIGGER
statement that creates the given trigger.
mysql> SHOW CREATE TRIGGER ins_sum
\G
*************************** 1. row ***************************
Trigger: ins_sum
sql_mode:
SQL Original Statement: CREATE DEFINER=`bob`@`localhost` TRIGGER ins_sum
BEFORE INSERT ON account
FOR EACH ROW SET @sum = @sum + NEW.amount
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
This statement was added in MySQL 5.1.21.
You can also obtain information about trigger objects from
INFORMATION_SCHEMA
, which contains a
TRIGGERS
table. See
Section 27.16, “The INFORMATION_SCHEMA TRIGGERS
Table”.
SHOW CREATE VIEW view_name
This statement shows a CREATE VIEW
statement that creates the given view.
mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
View: v
Create View: CREATE ALGORITHM=UNDEFINED
DEFINER=`bob`@`localhost`
SQL SECURITY DEFINER VIEW
`v` AS select 1 AS `a`,2 AS `b`
character_set_client: latin1
collation_connection: latin1_swedish_ci
character_set_client
is the session value
of the character_set_client
system variable
when the routine was created.
collation_connection
is the session value
of the collation_connection
system variable
when the routine was created. These columns were added in
MySQL 5.1.21.
Use of SHOW CREATE VIEW
requires the
SHOW VIEW
privilege and the
SELECT
privilege for the view in question.
You can also obtain information about view objects from
INFORMATION_SCHEMA
, which contains a
VIEWS
table. See
Section 27.15, “The INFORMATION_SCHEMA VIEWS
Table”.
SHOW {DATABASES | SCHEMAS} [LIKE 'pattern
' | WHEREexpr
]
SHOW DATABASES
lists the databases on the
MySQL server host. SHOW SCHEMAS
is a
synonym for SHOW DATABASES
. The
LIKE
clause, if present,
indicates which database names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
You see only those databases for which you have some kind of
privilege, unless you have the global SHOW
DATABASES
privilege. You can also get this list
using the mysqlshow command.
If the server was started with the
--skip-show-database
option, you cannot use
this statement at all unless you have the SHOW
DATABASES
privilege.
SHOW SCHEMAS
can also be used.
SHOW ENGINE engine_name
{STATUS | MUTEX}
SHOW ENGINE
displays operational
information about a storage engine. The following statements
currently are supported:
SHOW ENGINE INNODB STATUS SHOW ENGINE INNODB MUTEX SHOW ENGINE {NDB | NDBCLUSTER} STATUS
Older (and now deprecated) synonyms are SHOW INNODB
STATUS
for SHOW ENGINE INNODB
STATUS
and SHOW MUTEX STATUS
for
SHOW ENGINE INNODB MUTEX
.
In MySQL 5.0, SHOW ENGINE INNODB
MUTEX
is invoked as SHOW MUTEX
STATUS
. The latter statement displays similar
information but in a somewhat different output format.
SHOW ENGINE BDB LOGS
formerly displayed
status information about BDB
log files. As
of MySQL 5.1.12, the BDB
storage engine is
not supported, and this statement produces a warning.
SHOW ENGINE INNODB STATUS
displays
extensive information about the state of the
InnoDB
storage engine.
The InnoDB
Monitors provide additional
information about InnoDB
processing. See
Section 13.5.11.1, “SHOW ENGINE INNODB STATUS
and the
InnoDB
Monitors”.
SHOW ENGINE INNODB MUTEX
displays
InnoDB
mutex statistics. From MySQL 5.1.2
to 5.1.14, the statement displays the following output fields:
Type
Always InnoDB
.
Name
The mutex name and the source file where it is
implemented. Example:
&pool->mutex:mem0pool.c
The mutex name indicates its purpose. For example, the
log_sys
mutex is used by the
InnoDB
logging subsystem and indicates
how intensive logging activity is. The
buf_pool
mutex protects the
InnoDB
buffer pool.
Status
The mutex status. The fields contains several values:
count
indicates how many times the
mutex was requested.
spin_waits
indicates how many times
the spinlock had to run.
spin_rounds
indicates the number of
spinlock rounds. (spin_rounds
divided by spin_waits
provides the
average round count.)
os_waits
indicates the number of
operating system waits. This occurs when the spinlock
did not work (the mutex was not locked during the
spinlock and it was necessary to yield to the
operating system and wait).
os_yields
indicates the number of
times a the thread trying to lock a mutex gave up its
timeslice and yielded to the operating system (on the
presumption that allowing other threads to run will
free the mutex so that it can be locked).
os_wait_times
indicates the amount
of time (in ms) spent in operating system waits, if
the timed_mutexes
system variable
is 1 (ON
). If
timed_mutexes
is 0
(OFF
), timing is disabled, so
os_wait_times
is 0.
timed_mutexes
is off by default.
From MySQL 5.1.15 on, the statement displays the following output fields:
Type
Always InnoDB
.
Name
The source file where the mutex is implemented, and the line number in the file where the mutex is created. The line number may change depending on your version of MySQL.
Status
This field displays the same values as previously
described (count
,
spin_waits
,
spin_rounds
,
os_waits
, os_yields
,
os_wait_times
), but only if
UNIV_DEBUG
was defined at MySQL
compilation time (for example, in
include/univ.h
in the
InnoDB
part of the MySQL source tree).
If UNIV_DEBUG
was not defined, the
statement displays only the os_waits
value. In the latter case (without
UNIV_DEBUG
), the information on which
the output is based is insufficient to distinguish regular
mutexes and mutexes that protect rw-locks (which allow
multiple readers or a single writer). Consequently, the
output may appear to contain multiple rows for the same
mutex.
Information from this statement can be used to diagnose system
problems. For example, large values of
spin_waits
and
spin_rounds
may indicate scalability
problems.
If the server has the NDBCLUSTER
storage
engine enabled, SHOW ENGINE NDB STATUS
displays cluster status information such as the number of
connected data nodes, the cluster connectstring, and cluster
binlog epochs, as well as counts of various Cluster API
objects created by the MySQL Server when connected to the
cluster. Sample output from this statement is shown here:
mysql> SHOW ENGINE NDB STATUS;
+------------+-----------------------+--------------------------------------------------+
| Type | Name | Status |
+------------+-----------------------+--------------------------------------------------+
| ndbcluster | connection | cluster_node_id=7,
connected_host=192.168.0.103, connected_port=1186, number_of_data_nodes=4,
number_of_ready_data_nodes=3, connect_count=0 |
| ndbcluster | NdbTransaction | created=6, free=0, sizeof=212 |
| ndbcluster | NdbOperation | created=8, free=8, sizeof=660 |
| ndbcluster | NdbIndexScanOperation | created=1, free=1, sizeof=744 |
| ndbcluster | NdbIndexOperation | created=0, free=0, sizeof=664 |
| ndbcluster | NdbRecAttr | created=1285, free=1285, sizeof=60 |
| ndbcluster | NdbApiSignal | created=16, free=16, sizeof=136 |
| ndbcluster | NdbLabel | created=0, free=0, sizeof=196 |
| ndbcluster | NdbBranch | created=0, free=0, sizeof=24 |
| ndbcluster | NdbSubroutine | created=0, free=0, sizeof=68 |
| ndbcluster | NdbCall | created=0, free=0, sizeof=16 |
| ndbcluster | NdbBlob | created=1, free=1, sizeof=264 |
| ndbcluster | NdbReceiver | created=4, free=0, sizeof=68 |
| ndbcluster | binlog | latest_epoch=155467, latest_trans_epoch=148126,
latest_received_binlog_epoch=0, latest_handled_binlog_epoch=0,
latest_applied_binlog_epoch=0 |
+------------+-----------------------+--------------------------------------------------+
The rows with connection
and
binlog
in the Name
column were added to the output of this statement in MySQL
5.1. The Status
column in each of these
rows provides information about the MySQL server's connection
to the cluster and about the cluster binary log's status,
respectively. The Status
information is in
the form of comma-delimited set of name/value pairs.
The connection
row's
Status
column contains the name/value pairs
described in the following table:
Name | Value |
cluster_node_id | The node ID of the MySQL server in the cluster |
connected_host | The hostname or IP address of the cluster management server to which the MySQL server is connected |
connected_port | The port used by the MySQL server to connect to the management server
(connected_host ) |
number_of_data_nodes | The number of data nodes configured for the cluster (that is, the number
of [ndbd] sections in the cluster
config.ini file) |
number_of_ready_data_nodes | The number of data nodes in the cluster that are actually running |
connect_count | The number of times this mysqld has connected or reconnected to cluster data nodes |
The binlog
row's Status
column contains information relating to MySQL Cluster
Replication. The name/value pairs it contains are described in
the following table:
Name | Value |
latest_epoch | The most recent epoch most recently run on this MySQL server (that is, the sequence number of the most recent transaction run on the server) |
latest_trans_epoch | The most recent epoch processed by the cluster's data nodes |
latest_received_binlog_epoch | The most recent epoch received by the binlog thread |
latest_handled_binlog_epoch | The most recent epoch processed by the binlog thread (for writing to the binlog) |
latest_applied_binlog_epoch | The most recent epoch actually written to the binlog |
See Section 20.11, “MySQL Cluster Replication”, for more information.
The remaining rows from the output of SHOW ENGINE NDB
STATUS
which are most likely to prove useful in
monitoring the cluster are listed here by
Name
:
NdbTransaction
: The number and size of
NdbTransaction
objects that have been
created. An NdbTransaction
is created
each time a table schema operation (such as
CREATE TABLE
or ALTER
TABLE
) is performed on an NDB
table.
NdbOperation
: The number and size of
NdbOperation
objects that have been
created.
NdbIndexScanOperation
: The number and
size of NdbIndexScanOperation
objects
that have been created.
NdbIndexOperation
: The number and size
of NdbIndexOperation
objects that have
been created.
NdbRecAttr
: The number and size of
NdbRecAttr
objects that have been
created. In general, one of these is created each time a
data manipulation statement is performed by an SQL node.
NdbBlob
: The number and size of
NdbBlob
objects that have been created.
An NdbBlob
is created for each new
operation involving a BLOB
column in an
NDB
table.
NdbReceiver
: The number and size of any
NdbReceiver
object that have been
created. The number in the created
column is the same as the number of data nodes in the
cluster to which the MySQL server has connected.
SHOW ENGINE NDB STATUS
returns an empty
result if no operations involving NDB
tables have been performed during the current session by the
MySQL client accessing the SQL node on which this statement
is run.
MySQL Enterprise
The SHOW ENGINE
statement provides valuable information about the state of
your server. For expert interpretation of this information,
subscribe to the MySQL Enterprise Monitor. For more
information see
http://www.mysql.com/products/enterprise/advisors.html.
engine_name
STATUS
SHOW [STORAGE] ENGINES
SHOW ENGINES
displays status information
about the server's storage engines. This is particularly
useful for checking whether a storage engine is supported, or
to see what the default engine is. SHOW TABLE
TYPES
is a deprecated synonym.
mysql> SHOW ENGINES\G
*************************** 1. row ***************************
Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
XA: NO
Savepoints: NO
*************************** 2. row ***************************
Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
XA: NO
Savepoints: NO
*************************** 3. row ***************************
Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
XA: YES
Savepoints: YES
*************************** 4. row ***************************
Engine: EXAMPLE
Support: YES
Comment: Example storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 5. row ***************************
Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 6. row ***************************
Engine: CSV
Support: YES
Comment: CSV storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 7. row ***************************
Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write »
to it disappears)
Transactions: NO
XA: NO
Savepoints: NO
*************************** 8. row ***************************
Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 9. row ***************************
Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables
Transactions: NO
XA: NO
Savepoints: NO
The output from SHOW ENGINES
may vary
according to the MySQL version used and other factors. The
values shown in the Support
column indicate
the server's level of support for different features, as shown
here:
Value | Meaning |
YES | The feature is supported and is active. |
NO | The feature is not supported. |
DISABLED | The feature is supported but has been disabled. |
A value of NO
means that the server was
compiled without support for the feature, so it cannot be
activated at runtime.
A value of DISABLED
occurs either because
the server was started with an option that disables the
feature, or because not all options required to enable it were
given. In the latter case, the error log file should contain a
reason indicating why the option is disabled. See
Section 5.2.2, “The Error Log”.
You might also see DISABLED
for a storage
engine if the server was compiled to support it, but was
started with a
--skip-
option. For the engine_name
NDBCLUSTER
storage engine,
DISABLED
means the server was compiled with
support for MySQL Cluster, but was not started with the
--ndbcluster
option.
All MySQL servers support MyISAM
tables,
because MyISAM
is the default storage
engine. It is not possible to disable
MyISAM
.
The Transactions
, XA
,
and Savepoints
columns were added in MySQL
5.1.2. They indicate whether the storage engine supports
transactions, XA transactions, and savepoints, respectively.
SHOW ERRORS [LIMIT [offset
,]row_count
] SHOW COUNT(*) ERRORS
This statement is similar to SHOW WARNINGS
,
except that instead of displaying errors, warnings, and notes,
it displays only errors.
The LIMIT
clause has the same syntax as for
the SELECT
statement. See
Section 12.2.7, “SELECT
Syntax”.
The SHOW COUNT(*) ERRORS
statement displays
the number of errors. You can also retrieve this number from
the error_count
variable:
SHOW COUNT(*) ERRORS; SELECT @@error_count;
For more information, see Section 12.5.4.32, “SHOW WARNINGS
Syntax”.
SHOW EVENTS [FROMschema_name
] [LIKE 'pattern
' | WHEREexpr
]
In its simplest form, SHOW EVENTS
lists all
of the events in the current schema:
mysql>SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+ | CURRENT_USER() | SCHEMA() | +----------------+----------+ | jon@ghidora | myschema | +----------------+----------+ 1 row in set (0.00 sec) mysql>SHOW EVENTS\G
*************************** 1. row *************************** Db: myschema Name: e_daily Definer: jon@ghidora Time zone: SYSTEM Type: RECURRING Execute at: NULL Interval value: 10 Interval field: INTERVAL_SECOND Starts: 2006-02-09 10:41:23 Ends: 0000-00-00 00:00:00 Status: ENABLED Originator: 0 character_set_client: latin1 collation_connection: latin1_swedish_ci Database Collation: latin1_swedish_ci
The LIKE
clause, if present,
indicates which event names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
The columns in the output of SHOW EVENTS
— which are similar to, but not identical to the columns
in the INFORMATION_SCHEMA.EVENTS
table
— are shown here:
Db
: The schema (database) on which the
event is defined.
Name
: The name of the event.
Time zone
: The time zone in effect when
schedule for the event was last modified. If the event's
schedule has not been modified since the event was
created, then this is the time zone that was in effect at
the event's creation. The default value is
SYSTEM
.
This column was added in MySQL 5.1.17. See Section C.1.12, “Changes in MySQL 5.1.17 (04 April 2007)”, for important information if you are using the Event Scheduler and are upgrading from MySQL 5.1.16 (or earlier) to MySQL 5.1.17 (or later).
Definer
: The user account
(
)
which created the event.
username
@hostname
Type
: One of the two values
ONE TIME
(transient) or
RECURRING
.
Execute At
: The date and time when a
transient event is set to execute. Shown as a
DATETIME
value.
For a recurring event, the value of this column is always
NULL
.
Interval Value
: For a recurring event,
the number of intervals to wait between event executions.
For a transient event, the value of this column is always
NULL
.
Interval Field
: The time units used for
the interval which a recurring event waits before
repeating.
For a transient event, the value of this column is always
NULL
.
Starts
: The start date and time for a
recurring event. This is displayed as a
DATETIME
value, and is empty if no
start date and time are defined for the event. (Prior to
MySQL 5.1.8, it defaulted to '0000-00-00
00:00:00'
in such cases.)
For a transient event, the value of this column is always
NULL
.
Ends
: The end date and time for a
recurring event. This is displayed as a
DATETIME
value, and defaults to
'0000-00-00 00:00:00'
if no end date
and time is defined for the event.
For a transient event, the value of this column is always
NULL
.
Status
: The event status. One of
ENABLED
, DISABLED
,
or SLAVESIDE_DISABLED
.
SLAVESIDE_DISABLED
was added in MySQL
5.1.18. This value indicates that the creation of the
event occurred on another MySQL server acting as a
replication master and replicated to the current MySQL
server which is acting as a slave, but the event is not
presently being executed on the slave.
Originator
: The server ID of the MySQL
server on which the event was created. Defaults to 0. This
column was added in MySQL 5.1.18.
character_set_client
is the session
value of the character_set_client
system variable when the routine was created.
collation_connection
is the session
value of the collation_connection
system variable when the routine was created.
Database Collation
is the collation of
the database with which the routine is associated. These
columns were added in MySQL 5.1.21.
For more information about SLAVE_DISABLED
and the Originator
column, see
Section 19.3.1.5, “Replication of Invoked Features”.
Note that the action statement is not shown in the output of
SHOW EVENTS
.
Prior to MySQL 5.1.17, the values displayed for
Starts
and Ends
(other
than '0000-00-00 00:00:00'
) were shown
using Universal Time (Bug#16420). Beginning with MySQL
5.1.17, these times are all given in terms of local time as
determined by the MySQL server's time_zone
setting. See also Section 27.20, “The INFORMATION_SCHEMA EVENTS
Table”.
To see events for a different schema, you can use the
FROM
clause. For example, if the
test
schema had been selected in the
preceding example, you could view events defined on
myschema
using the following statement:
SHOW EVENTS FROM myschema;
You can filter the list returned by this statement on the
event name using LIKE
plus a
pattern.
This statement was added in MySQL 5.1.6.
See also Section 27.20, “The INFORMATION_SCHEMA EVENTS
Table”.
In MySQL 5.1.11 and earlier, SHOW EVENTS
displayed only those events for which the current user was
the definer, and the SHOW FULL EVENTS
statement was used for viewing events defined by all users
on a given schema. SHOW FULL EVENTS
was
removed in MySQL 5.1.12.
SHOW GRANTS [FOR user
]
This statement lists the GRANT
statement or
statements that must be issued to duplicate the privileges
that are granted to a MySQL user account. The account is named
using the same format as for the GRANT
statement; for example,
'jeffrey'@'localhost'
. If you specify only
the username part of the account name, a hostname part of
'%'
is used. For additional information
about specifying account names, see Section 12.5.1.3, “GRANT
Syntax”.
mysql> SHOW GRANTS FOR 'root'@'localhost';
+---------------------------------------------------------------------+
| Grants for root@localhost |
+---------------------------------------------------------------------+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---------------------------------------------------------------------+
To list the privileges granted to the account that you are using to connect to the server, you can use any of the following statements:
SHOW GRANTS; SHOW GRANTS FOR CURRENT_USER; SHOW GRANTS FOR CURRENT_USER();
As of MySQL 5.1.12, if SHOW GRANTS FOR
CURRENT_USER
(or any of the equivalent syntaxes) is
used in DEFINER
context, such as within a
stored procedure that is defined with SQL SECURITY
DEFINER
), the grants displayed are those of the
definer and not the invoker.
SHOW GRANTS
displays only the privileges
granted explicitly to the named account. Other privileges
might be available to the account, but they are not displayed.
For example, if an anonymous account exists, the named account
might be able to use its privileges, but SHOW
GRANTS
will not display them.
SHOW INDEX FROMtbl_name
[FROMdb_name
]
SHOW INDEX
returns table index information.
The format resembles that of the
SQLStatistics
call in ODBC.
SHOW INDEX
returns the following fields:
Table
The name of the table.
Non_unique
0 if the index cannot contain duplicates, 1 if it can.
Key_name
The name of the index.
Seq_in_index
The column sequence number in the index, starting with 1.
Column_name
The column name.
How the column is sorted in the index. In MySQL, this can
have values “A
”
(Ascending) or NULL
(Not sorted).
An estimate of the number of unique values in the index.
This is updated by running ANALYZE
TABLE
or myisamchk -a.
Cardinality
is counted based on
statistics stored as integers, so the value is not
necessarily exact even for small tables. The higher the
cardinality, the greater the chance that MySQL uses the
index when doing joins.
Sub_part
The number of indexed characters if the column is only
partly indexed, NULL
if the entire
column is indexed.
Packed
Indicates how the key is packed. NULL
if it is not.
Null
Contains YES
if the column may contain
NULL
. If not, the column contains
NO
.
Contains YES
if the column may contain
NULL
values and ''
if not.
Index_type
The index method used (BTREE
,
FULLTEXT
, HASH
,
RTREE
).
Comment
Various remarks.
You can use
db_name
.tbl_name
as an alternative to the
syntax. These two
statements are equivalent:
tbl_name
FROM
db_name
SHOW INDEX FROM mytable FROM mydb; SHOW INDEX FROM mydb.mytable;
SHOW KEYS
is a synonym for SHOW
INDEX
. You can also list a table's indexes with the
mysqlshow -k db_name
tbl_name
command.
SHOW INNODB STATUS
In MySQL 5.1, this is a deprecated synonym for
SHOW ENGINE INNODB STATUS
. See
Section 12.5.4.13, “SHOW ENGINE
Syntax”.
SHOW OPEN TABLES [FROMdb_name
] [LIKE 'pattern
' | WHEREexpr
]
SHOW OPEN TABLES
lists the
non-TEMPORARY
tables that are currently
open in the table cache. See Section 7.4.8, “How MySQL Opens and Closes Tables”.
The WHERE
clause can be given to select
rows using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
The FROM
and
LIKE
clauses may be used
beginning with MySQL 5.1.24. The
LIKE
clause, if present,
indicates which table names to match. The
FROM
clause, if present, restricts the
tables shown to those present in the
db_name
database.
SHOW OPEN TABLES
returns the following
columns:
Database
The database containing the table.
Table
The table name.
In_use
The number of table locks or lock requests there are for
the table. For example, if one client acquires a lock for
a table using LOCK TABLE t1 WRITE
,
In_use
will be 1. If another client
issues LOCK TABLE t1 WRITE
while the
table remains locked, the client will block waiting for
the lock, but the lock request causes
In_use
to be 2. If the count is zero,
the table is open but not currently being used.
Name_locked
Whether the table name is locked. Name locking is used for operations such as dropping or renaming tables.
SHOW PLUGINS
SHOW PLUGINS
displays information about
known plugins.
mysql> SHOW PLUGINS;
+------------+--------+----------------+---------+
| Name | Status | Type | Library |
+------------+--------+----------------+---------+
| MEMORY | ACTIVE | STORAGE ENGINE | NULL |
| MyISAM | ACTIVE | STORAGE ENGINE | NULL |
| InnoDB | ACTIVE | STORAGE ENGINE | NULL |
| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL |
| CSV | ACTIVE | STORAGE ENGINE | NULL |
| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL |
| FEDERATED | ACTIVE | STORAGE ENGINE | NULL |
| MRG_MYISAM | ACTIVE | STORAGE ENGINE | NULL |
+------------+--------+----------------+---------+
SHOW PLUGIN
was added in MySQL 5.1.5 and
renamed to SHOW PLUGINS
in 5.1.9. (As of
5.1.9, SHOW PLUGIN
is deprecated and
generates a warning.)
SHOW PRIVILEGES
SHOW PRIVILEGES
shows the list of system
privileges that the MySQL server supports. The exact list of
privileges depends on the version of your server.
mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
Context: Tables
Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
Context: Functions,Procedures
Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
Context: Databases,Tables,Indexes
Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
Context: Functions,Procedures
Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
Context: Databases
Comment: To use CREATE TEMPORARY TABLE
...
Privileges belonging to a specific user are displayed by the
SHOW GRANTS
statement. See
Section 12.5.4.17, “SHOW GRANTS
Syntax”, for more information.
SHOW {PROCEDURE | FUNCTION} CODE sp_name
These statements are MySQL extensions that are available only
for servers that have been built with debugging support. They
display a representation of the internal implementation of the
named routine. The statements require that you be the owner of
the routine or have SELECT
access to the
mysql.proc
table.
If the named routine is available, each statement produces a
result set. Each row in the result set corresponds to one
“instruction” in the routine. The first column is
Pos
, which is an ordinal number beginning
with 0. The second column is Instruction
,
which contains an SQL statement (usually changed from the
original source), or a directive which has meaning only to the
stored-routine handler.
mysql>DELIMITER //
mysql>CREATE PROCEDURE p1 ()
->BEGIN
->DECLARE fanta INT DEFAULT 55;
->DROP TABLE t2;
->LOOP
->INSERT INTO t3 VALUES (fanta);
->END LOOP;
->END//
Query OK, 0 rows affected (0.00 sec) mysql>SHOW PROCEDURE CODE p1//
+-----+----------------------------------------+ | Pos | Instruction | +-----+----------------------------------------+ | 0 | set fanta@0 55 | | 1 | stmt 9 "DROP TABLE t2" | | 2 | stmt 5 "INSERT INTO t3 VALUES (fanta)" | | 3 | jump 2 | +-----+----------------------------------------+ 4 rows in set (0.00 sec)
In this example, the non-executable BEGIN
and END
statements have disappeared, and
for the DECLARE
statement,
only the executable part appears (the part where the default
is assigned). For each statement that is taken from source,
there is a code word variable_name
stmt
followed by a
type (9 means DROP
, 5 means
INSERT
, and so on). The final row contains
an instruction jump 2
, meaning
GOTO instruction #2
.
These statements were added in MySQL 5.1.3.
SHOW {PROCEDURE | FUNCTION} STATUS [LIKE 'pattern
' | WHEREexpr
]
These statements are MySQL extensions. They return
characteristics of routines, such as the database, name, type,
creator, creation and modification dates, and character set
information. The LIKE
clause, if present, indicates which procedure or function
names to match. The WHERE
clause can be
given to select rows using more general conditions, as
discussed in Section 27.27, “Extensions to SHOW
Statements”.
mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************
Db: test
Name: hello
Type: FUNCTION
Definer: testuser@localhost
Modified: 2004-08-03 15:29:37
Created: 2004-08-03 15:29:37
Security_type: DEFINER
Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client
is the session value
of the character_set_client
system variable
when the routine was created.
collation_connection
is the session value
of the collation_connection
system variable
when the routine was created. Database
Collation
is the collation of the database with
which the routine is associated. These columns were added in
MySQL 5.1.21.
You can also get information about stored routines from the
ROUTINES
table in
INFORMATION_SCHEMA
. See
Section 27.14, “The INFORMATION_SCHEMA ROUTINES
Table”.
SHOW [FULL] PROCESSLIST
SHOW PROCESSLIST
shows you which threads
are running. You can also get this information from the
INFORMATION_SCHEMA
PROCESSLIST
table or the
mysqladmin processlist command. If you have
the PROCESS
privilege, you can see all
threads. Otherwise, you can see only your own threads (that
is, threads associated with the MySQL account that you are
using). If you do not use the FULL
keyword,
only the first 100 characters of each statement are shown in
the Info
field.
MySQL Enterprise Subscribers to MySQL Enterprise Monitor receive instant notification and expert advice on resolution when there are too many concurrent processes. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
This statement is very useful if you get the “too many
connections” error message and want to find out what is
going on. MySQL reserves one extra connection to be used by
accounts that have the SUPER
privilege, to
ensure that administrators should always be able to connect
and check the system (assuming that you are not giving this
privilege to all your users).
Threads can be killed with the KILL
statement. See Section 12.5.5.3, “KILL
Syntax”.
Here is an example of what SHOW PROCESSLIST
output looks like:
mysql> SHOW FULL PROCESSLIST\G *************************** 1. row *************************** Id: 1 User: system user Host: db: NULL Command: Connect Time: 1030455 State: Waiting for master to send event Info: NULL *************************** 2. row *************************** Id: 2 User: system user Host: db: NULL Command: Connect Time: 1004 State: Has read all relay log; waiting for the slave I/O thread to update it Info: NULL *************************** 3. row *************************** Id: 3112 User: replikator Host: artemis:2204 db: NULL Command: Binlog Dump Time: 2144 State: Has sent all binlog to slave; waiting for binlog to be updated Info: NULL *************************** 4. row *************************** Id: 3113 User: replikator Host: iconnect2:45781 db: NULL Command: Binlog Dump Time: 2086 State: Has sent all binlog to slave; waiting for binlog to be updated Info: NULL *************************** 5. row *************************** Id: 3123 User: stefan Host: localhost db: apollon Command: Query Time: 0 State: NULL Info: SHOW FULL PROCESSLIST 5 rows in set (0.00 sec)
The columns have the following meaning:
Id
The connection identifier.
User
The MySQL user who issued the statement. If this is
system user
, it refers to a non-client
thread spawned by the server to handle tasks internally.
This could be the I/O or SQL thread used on replication
slaves or a delayed-row handler. unauthenticated
user
refers to a thread that has become
associated with a client connection but for which
authentication of the client user has not yet been done.
event_scheduler
refers to the thread
that monitors scheduled events. For system
user
or event_scheduler
,
there is no host specified in the Host
column.
Host
The hostname of the client issuing the statement (except
for system user
where there is no
host). SHOW PROCESSLIST
reports the
hostname for TCP/IP connections in
format to make it easier to determine which client is
doing what.
host_name
:client_port
db
The default database, if one is selected, otherwise
NULL
.
Command
The type of command the thread is executing. Descriptions
for thread commands can be found at
Section 7.5.5, “Examining Thread Information”. The value of this
column corresponds to the
COM_
commands of the client/server protocol. See
Section 5.1.6, “Status Variables”
xxx
Time
The time in seconds that the thread has been in its current state.
State
An action, event, or state that indicates what the thread
is doing. Descriptions for State
values
can be found at Section 7.5.5, “Examining Thread Information”.
Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that needs to be investigated.
For the SHOW PROCESSLIST
statement, the
value of State
is
NULL
.
Info
The statement that the thread is executing, or
NULL
if it is not executing any
statement. The statment might be the one sent to the
server, or an innermost statement if the statement
executes other statements. For example, if a CALL
p1()
statement executes a stored procedure
p1()
, and the procedure is executing a
SELECT
statement, the
Info
value shows the
SELECT
statement.
SHOW SCHEDULER STATUS
This statement provides debugging information regarding the
Event Scheduler's state. It is supported only in
-debug
builds of MySQL 5.1.11, and was
removed in 5.1.12 and subsequent releases.
Sample output is shown here:
+--------------------------------+---------------------+ | Name | Value | +--------------------------------+---------------------+ | scheduler state | INITIALIZED | | thread_id | NULL | | scheduler last locked at | init_scheduler::313 | | scheduler last unlocked at | init_scheduler::318 | | scheduler waiting on condition | 0 | | scheduler workers count | 0 | | scheduler executed events | 0 | | scheduler data locked | 0 | | queue element count | 1 | | queue data locked | 0 | | queue data attempting lock | 0 | | queue last locked at | create_event::218 | | queue last unlocked at | create_event::222 | | queue last attempted lock at | ::0 | | queue waiting on condition | 0 | | next activation at | 0-00-00 00:00:00 | +--------------------------------+---------------------+
In MySQL 5.1.12 and later, this information can be obtained using mysqladmin debug. (See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.) For more information about obtaining Event Scheduler status information, see Section 25.4, “Event Scheduler Status”.
SHOW [GLOBAL | SESSION] STATUS [LIKE 'pattern
' | WHEREexpr
]
SHOW STATUS
provides server status
information. This information also can be obtained using the
mysqladmin extended-status command. The
LIKE
clause, if present,
indicates which variable names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
Partial output is shown here. The list of names and values may be different for your server. The meaning of each variable is given in Section 5.1.6, “Status Variables”.
mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
| Aborted_clients | 0 |
| Aborted_connects | 0 |
| Bytes_received | 155372598 |
| Bytes_sent | 1176560426 |
| Connections | 30023 |
| Created_tmp_disk_tables | 0 |
| Created_tmp_tables | 8340 |
| Created_tmp_files | 60 |
...
| Open_tables | 1 |
| Open_files | 2 |
| Open_streams | 0 |
| Opened_tables | 44600 |
| Questions | 2026873 |
...
| Table_locks_immediate | 1920382 |
| Table_locks_waited | 0 |
| Threads_cached | 0 |
| Threads_created | 30022 |
| Threads_connected | 1 |
| Threads_running | 1 |
| Uptime | 80380 |
+--------------------------+------------+
With a LIKE
clause, the
statement displays only rows for those variables with names
that match the pattern:
mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| Key_blocks_used | 14955 |
| Key_read_requests | 96854827 |
| Key_reads | 162040 |
| Key_write_requests | 7589728 |
| Key_writes | 3813196 |
+--------------------+----------+
With the GLOBAL
modifier, SHOW
STATUS
displays the status values for all
connections to MySQL. With SESSION
, it
displays the status values for the current connection. If no
modifier is present, the default is
SESSION
. LOCAL
is a
synonym for SESSION
.
Some status variables have only a global value. For these, you
get the same value for both GLOBAL
and
SESSION
. The scope for each status variable
is listed at Section 5.1.6, “Status Variables”.
MySQL Enterprise Status variables provide valuable clues to the state of your servers. For expert interpretation of the information provided by status variables, subscribe to the MySQL Enterprise Monitor. For more information, see http://www.mysql.com/products/enterprise/advisors.html.
SHOW TABLE STATUS [FROMdb_name
] [LIKE 'pattern
' | WHEREexpr
]
SHOW TABLE STATUS
works likes SHOW
TABLES
, but provides a lot of information about each
non-TEMPORARY
table. You can also get this
list using the mysqlshow --status
db_name
command. The
LIKE
clause, if present,
indicates which table names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
This statement also displays information about views.
SHOW TABLE STATUS
returns the following
fields:
Name
The name of the table.
Engine
The storage engine for the table. See Chapter 13, Storage Engines.
Version
The version number of the table's
.frm
file.
Row_format
The row storage format (Fixed
,
Dynamic
, Compressed
,
Redundant
, Compact
).
The format of InnoDB
tables is reported
as Redundant
or
Compact
.
Rows
The number of rows. Some storage engines, such as
MyISAM
, store the exact count. For
other storage engines, such as InnoDB
,
this value is an approximation, and may vary from the
actual value by as much as 40 to 50%. In such cases, use
SELECT COUNT(*)
to obtain an accurate
count.
The Rows
value is
NULL
for tables in the
INFORMATION_SCHEMA
database.
Avg_row_length
The average row length.
Data_length
The length of the data file.
Max_data_length
The maximum length of the data file. This is the total number of bytes of data that can be stored in the table, given the data pointer size used.
Index_length
The length of the index file.
Data_free
The number of allocated but unused bytes. Beginning with
MySQL 5.1.24, this information is also shown for
InnoDB
tables. (Bug#32440)
Auto_increment
The next AUTO_INCREMENT
value.
Create_time
When the table was created.
Update_time
When the data file was last updated. For some storage
engines, this value is NULL
. For
example, InnoDB
stores multiple tables
in its tablespace and the data file timestamp does not
apply.
Check_time
When the table was last checked. Not all storage engines
update this time, in which case the value is always
NULL
.
Collation
The table's character set and collation.
Checksum
The live checksum value (if any).
Create_options
Extra options used with CREATE TABLE
.
The original options supplied when CREATE
TABLE
is called are retained and the options
reported here may differ from the active table settings
and options.
Comment
The comment used when creating the table (or information as to why MySQL could not access the table information).
In the table comment, InnoDB
tables report
the free space of the tablespace to which the table belongs.
For a table located in the shared tablespace, this is the free
space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free
space is for only that table. Free space means the number of
completely free 1MB extents minus a safety margin. Even if
free space displays as 0, it may be possible to insert rows as
long as new extents need not be allocated.
For MEMORY
tables, the
Data_length
,
Max_data_length
, and
Index_length
values approximate the actual
amount of allocated memory. The allocation algorithm reserves
memory in large amounts to reduce the number of allocation
operations.
For NDBCLUSTER
tables, the output of this
statement shows appropriate values for the
Avg_row_length
and
Data_length
columns, with the exception
that BLOB
columns are not taken into
account. In addition, the number of replicas is shown in the
Comment
column (as
number_of_replicas
).
For views, all the fields displayed by SHOW TABLE
STATUS
are NULL
except that
Name
indicates the view name and
Comment
says view
.
SHOW [FULL] TABLES [FROMdb_name
] [LIKE 'pattern
' | WHEREexpr
]
SHOW TABLES
lists the
non-TEMPORARY
tables in a given database.
You can also get this list using the mysqlshow
db_name
command. The
LIKE
clause, if present,
indicates which table names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
This statement also lists any views in the database. The
FULL
modifier is supported such that
SHOW FULL TABLES
displays a second output
column. Values for the second column are BASE
TABLE
for a table and VIEW
for a
view.
If you have no privileges for a base table or view, it does
not show up in the output from SHOW TABLES
or mysqlshow db_name.
SHOW TRIGGERS [FROMdb_name
] [LIKE 'pattern
' | WHEREexpr
]
SHOW TRIGGERS
lists the triggers currently
defined for tables in a database (the default database unless
a FROM
clause is given). This statement
requires the TRIGGER
privilege (prior to
MySQL 5.1.22, it requires the SUPER
privilege). The LIKE
clause,
if present, indicates which table names to match and causes
the statement to display triggers for those tables. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
For the trigger ins_sum
as defined in
Section 24.3, “Using Triggers”, the output of this statement
is as shown here:
mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
Trigger: ins_sum
Event: INSERT
Table: account
Statement: SET @sum = @sum + NEW.amount
Timing: BEFORE
Created: NULL
sql_mode:
Definer: myname@localhost
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client
is the session value
of the character_set_client
system variable
when the trigger was created.
collation_connection
is the session value
of the collation_connection
system variable
when the trigger was created. Database
Collation
is the collation of the database with
which the trigger is associated. These columns were added in
MySQL 5.1.21.
When using a LIKE
clause
with SHOW TRIGGERS
, the expression to be
matched (expr
) is compared with
the name of the table on which the trigger is declared, and
not with the name of the trigger:
mysql> SHOW TRIGGERS LIKE 'ins%';
Empty set (0.01 sec)
A brief explanation of the columns in the output of this statement is shown here:
Trigger
The name of the trigger.
Event
The event that causes trigger activation: one of
'INSERT'
, 'UPDATE'
,
or 'DELETE'
.
Table
The table for which the trigger is defined.
Statement
The statement to be executed when the trigger is
activated. This is the same as the text shown in the
ACTION_STATEMENT
column of
INFORMATION_SCHEMA.TRIGGERS
.
Timing
One of the two values 'BEFORE'
or
'AFTER'
.
Created
Currently, the value of this column is always
NULL
.
sql_mode
The SQL mode in effect when the trigger executes.
Definer
The account that created the trigger.
See also Section 27.16, “The INFORMATION_SCHEMA TRIGGERS
Table”.
SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern
' | WHEREexpr
]
SHOW VARIABLES
shows the values of MySQL
system variables. This information also can be obtained using
the mysqladmin variables command. The
LIKE
clause, if present,
indicates which variable names to match. The
WHERE
clause can be given to select rows
using more general conditions, as discussed in
Section 27.27, “Extensions to SHOW
Statements”.
With the GLOBAL
modifier, SHOW
VARIABLES
displays the values that are used for new
connections to MySQL. With SESSION
, it
displays the values that are in effect for the current
connection. If no modifier is present, the default is
SESSION
. LOCAL
is a
synonym for SESSION
.
If the default system variable values are unsuitable, you can
set them using command options when mysqld
starts, and most can be changed at runtime with the
SET
statement. See
Section 5.1.5, “Using System Variables”, and
Section 12.5.3, “SET
Syntax”.
Partial output is shown here. The list of names and values may be different for your server. Section 5.1.3, “System Variables”, describes the meaning of each variable, and Section 7.5.2, “Tuning Server Parameters”, provides information about tuning them.
mysql> SHOW VARIABLES;
+---------------------------------+---------------------------+
| Variable_name | Value |
+---------------------------------+---------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
| automatic_sp_privileges | ON |
| back_log | 50 |
| basedir | /home/jon/bin/mysql-5.1/ |
| binlog_cache_size | 32768 |
| bulk_insert_buffer_size | 8388608 |
| character_set_client | latin1 |
| character_set_connection | latin1 |
...
| max_user_connections | 0 |
| max_write_lock_count | 4294967295 |
| multi_range_count | 256 |
| myisam_data_pointer_size | 6 |
| myisam_max_sort_file_size | 2147483647 |
| myisam_recover_options | OFF |
| myisam_repair_threads | 1 |
| myisam_sort_buffer_size | 8388608 |
| ndb_autoincrement_prefetch_sz | 32 |
| ndb_cache_check_time | 0 |
| ndb_force_send | ON |
...
| time_zone | SYSTEM |
| timed_mutexes | OFF |
| tmp_table_size | 33554432 |
| tmpdir | |
| transaction_alloc_block_size | 8192 |
| transaction_prealloc_size | 4096 |
| tx_isolation | REPEATABLE-READ |
| updatable_views_with_limit | YES |
| version | 5.1.6-alpha-log |
| version_comment | Source distribution |
| version_compile_machine | i686 |
| version_compile_os | suse-linux |
| wait_timeout | 28800 |
+---------------------------------+---------------------------+
With a LIKE
clause, the
statement displays only rows for those variables with names
that match the pattern. To obtain the row for a specific
variable, use a LIKE
clause
as shown:
SHOW VARIABLES LIKE 'max_join_size'; SHOW SESSION VARIABLES LIKE 'max_join_size';
To get a list of variables whose name match a pattern, use the
“%
” wildcard character in a
LIKE
clause:
SHOW VARIABLES LIKE '%size%'; SHOW GLOBAL VARIABLES LIKE '%size%';
Wildcard characters can be used in any position within the
pattern to be matched. Strictly speaking, because
“_
” is a wildcard that matches
any single character, you should escape it as
“\_
” to match it literally. In
practice, this is rarely necessary.
SHOW WARNINGS [LIMIT [offset
,]row_count
] SHOW COUNT(*) WARNINGS
SHOW WARNINGS
shows the error, warning, and
note messages that resulted from the last statement that
generated messages. It shows nothing if the last statement
used a table and generated no messages. (That is, a statement
that uses a table but generates no messages clears the message
list.) Statements that do not use tables and do not generate
messages have no effect on the message list.
A related statement, SHOW ERRORS
, shows
only the errors. See Section 12.5.4.15, “SHOW ERRORS
Syntax”.
The SHOW COUNT(*) WARNINGS
statement
displays the total number of errors, warnings, and notes. You
can also retrieve this number from the
warning_count
variable:
SHOW COUNT(*) WARNINGS; SELECT @@warning_count;
The value of warning_count
might be greater
than the number of messages displayed by SHOW
WARNINGS
if the max_error_count
system variable is set so low that not all messages are
stored. An example shown later in this section demonstrates
how this can happen.
The LIMIT
clause has the same syntax as for
the SELECT
statement. See
Section 12.2.7, “SELECT
Syntax”.
The MySQL server sends back the total number of errors,
warnings, and notes resulting from the last statement. If you
are using the C API, this value can be obtained by calling
mysql_warning_count()
. See
Section 29.2.3.72, “mysql_warning_count()
”.
Warnings are generated for statements such as LOAD
DATA INFILE
and DML statements such as
INSERT
, UPDATE
,
CREATE TABLE
, and ALTER
TABLE
.
The following DROP TABLE
statement results
in a note:
mysql>DROP TABLE IF EXISTS no_such_table;
mysql>SHOW WARNINGS;
+-------+------+-------------------------------+ | Level | Code | Message | +-------+------+-------------------------------+ | Note | 1051 | Unknown table 'no_such_table' | +-------+------+-------------------------------+
Here is a simple example that shows a syntax warning for
CREATE TABLE
and conversion warnings for
INSERT
:
mysql>CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4)) TYPE=MyISAM;
Query OK, 0 rows affected, 1 warning (0.00 sec) mysql>SHOW WARNINGS\G
*************************** 1. row *************************** Level: Warning Code: 1287 Message: 'TYPE=storage_engine' is deprecated, use 'ENGINE=storage_engine' instead 1 row in set (0.00 sec) mysql>INSERT INTO t1 VALUES(10,'mysql'),(NULL,'test'),
->(300,'Open Source');
Query OK, 3 rows affected, 4 warnings (0.01 sec) Records: 3 Duplicates: 0 Warnings: 4 mysql>SHOW WARNINGS\G
*************************** 1. row *************************** Level: Warning Code: 1265 Message: Data truncated for column 'b' at row 1 *************************** 2. row *************************** Level: Warning Code: 1263 Message: Data truncated, NULL supplied to NOT NULL column 'a' at row 2 *************************** 3. row *************************** Level: Warning Code: 1264 Message: Data truncated, out of range for column 'a' at row 3 *************************** 4. row *************************** Level: Warning Code: 1265 Message: Data truncated for column 'b' at row 3 4 rows in set (0.00 sec)
The maximum number of error, warning, and note messages to
store is controlled by the max_error_count
system variable. By default, its value is 64. To change the
number of messages you want stored, change the value of
max_error_count
. In the following example,
the ALTER TABLE
statement produces three
warning messages, but only one is stored because
max_error_count
has been set to 1:
mysql>SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+ | Variable_name | Value | +-----------------+-------+ | max_error_count | 64 | +-----------------+-------+ 1 row in set (0.00 sec) mysql>SET max_error_count=1;
Query OK, 0 rows affected (0.00 sec) mysql>ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec) Records: 3 Duplicates: 0 Warnings: 3 mysql>SELECT @@warning_count;
+-----------------+ | @@warning_count | +-----------------+ | 3 | +-----------------+ 1 row in set (0.01 sec) mysql>SHOW WARNINGS;
+---------+------+----------------------------------------+ | Level | Code | Message | +---------+------+----------------------------------------+ | Warning | 1263 | Data truncated for column 'b' at row 1 | +---------+------+----------------------------------------+ 1 row in set (0.00 sec)
To disable warnings, set max_error_count
to
0. In this case, warning_count
still
indicates how many warnings have occurred, but none of the
messages are stored.
You can set the SQL_NOTES
session variable
to 0 to cause Note
-level warnings not to be
recorded.
CACHE INDEXtbl_index_list
[,tbl_index_list
] ... INkey_cache_name
tbl_index_list
:tbl_name
[[INDEX|KEY] (index_name
[,index_name
] ...)]
The CACHE INDEX
statement assigns table
indexes to a specific key cache. It is used only for
MyISAM
tables.
The following statement assigns indexes from the tables
t1
, t2
, and
t3
to the key cache named
hot_cache
:
mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status | OK |
| test.t2 | assign_to_keycache | status | OK |
| test.t3 | assign_to_keycache | status | OK |
+---------+--------------------+----------+----------+
The syntax of CACHE INDEX
enables you to
specify that only particular indexes from a table should be
assigned to the cache. The current implementation assigns all
the table's indexes to the cache, so there is no reason to
specify anything other than the table name.
The key cache referred to in a CACHE INDEX
statement can be created by setting its size with a parameter
setting statement or in the server parameter settings. For
example:
mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;
Key cache parameters can be accessed as members of a structured system variable. See Section 5.1.5.1, “Structured System Variables”.
A key cache must exist before you can assign indexes to it:
mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'
By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache again.
Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is used for all queries involving the index, no matter which client issues the queries.
FLUSH [LOCAL | NO_WRITE_TO_BINLOG]flush_option
[,flush_option
] ...
The FLUSH
statement clears or reloads
various internal caches used by MySQL. To execute
FLUSH
, you must have the
RELOAD
privilege.
The RESET
statement is similar to
FLUSH
. See Section 12.5.5.5, “RESET
Syntax”.
flush_option
can be any of the
following:
DES_KEY_FILE
Reloads the DES keys from the file that was specified with
the --des-key-file
option at server
startup time.
HOSTS
Empties the host cache tables. You should flush the host
tables if some of your hosts change IP number or if you
get the error message Host
'
. When more than
host_name
' is
blockedmax_connect_errors
errors occur
successively for a given host while connecting to the
MySQL server, MySQL assumes that something is wrong and
blocks the host from further connection requests. Flushing
the host tables enables further connection attempts from
the host. See Section B.1.2.6, “Host '
”. You can
start mysqld with
host_name
' is
blocked--max_connect_errors=999999999
to avoid
this error message.
LOGS
Closes and reopens all log files. If binary logging is
enabled, the sequence number of the binary log file is
incremented by one relative to the previous file. On Unix,
this is the same thing as sending a
SIGHUP
signal to the
mysqld server (except on some Mac OS X
10.3 versions where mysqld ignores
SIGHUP
and SIGQUIT
).
If the server is writing error output to a named file (for
example, if it was started with the
--log-error
option), FLUSH
LOGS
causes it to rename the current error log
file with a suffix of -old
and create a
new empty log file. No renaming occurs if the server is
not writing to a named file (for example, if it is writing
errors to the console).
MASTER
(DEPRECATED). Deletes all binary
logs, resets the binary log index file and creates a new
binary log. FLUSH MASTER
is deprecated
in favor of RESET MASTER
, and is
supported for backward compatibility only. See
Section 12.6.1.2, “RESET MASTER
Syntax”.
PRIVILEGES
Reloads the privileges from the grant tables in the
mysql
database. On Unix, this also
occurs if the server receives a SIGHUP
signal.
The server caches information in memory as a result of
GRANT
, CREATE USER
,
CREATE SERVER
, and INSTALL
PLUGIN
statements. This memory is not released
by the corresponding REVOKE
,
DROP USER
, DROP
SERVER
, and UNINSTALL PLUGIN
statements, so for a server that executes many instances
of the statements that cause caching, there will be an
increase in memory use. This cached memory can be freed
with FLUSH PRIVILEGES
.
QUERY CACHE
Defragment the query cache to better utilize its memory.
FLUSH QUERY CACHE
does not remove any
queries from the cache, unlike FLUSH
TABLES
or RESET QUERY CACHE
.
SLAVE
(DEPRECATED). Resets all replication
slave parameters, including relay log files and
replication position in the master's binary logs.
FLUSH SLAVE
is deprecated in favor of
RESET SLAVE
, and is supported for
backward compatibility only. See
Section 12.6.2.5, “RESET SLAVE
Syntax”.
STATUS
This option adds the current thread's session status
variable values to the global values and resets the
session values to zero. It also resets the counters for
key caches (default and named) to zero and sets
Max_used_conections
to the current
number of open connections. This is something you should
use only when debugging a query. See
Section 1.7, “How to Report Bugs or Problems”.
{TABLE | TABLES}
[
tbl_name
[,
tbl_name
] ...]
When no tables are named, closes all open tables, forces
all tables in use to be closed, and flushes the query
cache. With one or more table names, flushes only the
given tables. FLUSH TABLES
also removes
all query results from the query cache, like the
RESET QUERY CACHE
statement.
TABLES WITH READ LOCK
Closes all open tables and locks all tables for all
databases with a read lock until you explicitly release
the lock by executing UNLOCK TABLES
.
This is very convenient way to get backups if you have a
filesystem such as Veritas that can take snapshots in
time.
FLUSH TABLES WITH READ LOCK
acquires a
global read lock and not table locks, so it is not subject
to the same behavior as LOCK TABLES
and
UNLOCK TABLES
with respect to table
locking and implicit commits:
UNLOCK TABLES
implicitly commits
any active transaction only if any tables currently
have been locked with LOCK TABLES
.
The commit does not occur for UNLOCK
TABLES
following FLUSH TABLES WITH
READ LOCK
because the latter statement does
not acquire table locks.
Beginning a transaction causes table locks acquired
with LOCK TABLES
to be released, as
though you had executed UNLOCK
TABLES
. Beginning a transaction does not
release a global read lock acquired with
FLUSH TABLES WITH READ LOCK
.
USER_RESOURCES
Resets all per-hour user resources to zero. This enables
clients that have reached their hourly connection, query,
or update limits to resume activity immediately.
FLUSH USER_RESOURCES
does not apply to
the limit on maximum simultaneous connections. See
Section 12.5.1.3, “GRANT
Syntax”.
By default, FLUSH
statements are written to
the binary log. Such statements used on a MySQL server acting
as a replication master will be replicated to replication
slaves. Logging can be suppressed with the optional
NO_WRITE_TO_BINLOG
keyword or its alias
LOCAL
.
See also Section 12.5.5.5, “RESET
Syntax”, for information about how
the RESET
statement is used with
replication.
FLUSH LOGS
, FLUSH
MASTER
, FLUSH SLAVE
, and
FLUSH TABLES WITH READ LOCK
are not
written to the binary log in any case because they would
cause problems if replicated to a slave.
The mysqladmin utility provides a
command-line interface to some flush operations, via the
flush-hosts
, flush-logs
,
flush-privileges
,
flush-status
, and
flush-tables
commands.
It is not possible in MySQL 5.1 to issue
FLUSH
statements within stored functions
or triggers. However, you may use FLUSH
in stored procedures, so long as these are not called from
stored functions or triggers. See
Section D.1, “Restrictions on Stored Routines, Triggers, and Events”.
KILL [CONNECTION | QUERY] thread_id
Each connection to mysqld runs in a
separate thread. You can see which threads are running with
the SHOW PROCESSLIST
statement and kill a
thread with the KILL
statement.
thread_id
KILL
allows the optional
CONNECTION
or QUERY
modifier:
KILL CONNECTION
is the same as
KILL
with no modifier: It terminates
the connection associated with the given
thread_id
.
KILL QUERY
terminates the statement
that the connection is currently executing, but leaves the
connection itself intact.
If you have the PROCESS
privilege, you can
see all threads. If you have the SUPER
privilege, you can kill all threads and statements. Otherwise,
you can see and kill only your own threads and statements.
You can also use the mysqladmin processlist and mysqladmin kill commands to examine and kill threads.
You cannot use KILL
with the Embedded
MySQL Server library, because the embedded server merely
runs inside the threads of the host application. It does not
create any connection threads of its own.
When you use KILL
, a thread-specific kill
flag is set for the thread. In most cases, it might take some
time for the thread to die, because the kill flag is checked
only at specific intervals:
In SELECT
, ORDER BY
and GROUP BY
loops, the flag is checked
after reading a block of rows. If the kill flag is set,
the statement is aborted.
During ALTER TABLE
, the kill flag is
checked before each block of rows are read from the
original table. If the kill flag was set, the statement is
aborted and the temporary table is deleted.
During UPDATE
or
DELETE
operations, the kill flag is
checked after each block read and after each updated or
deleted row. If the kill flag is set, the statement is
aborted. Note that if you are not using transactions, the
changes are not rolled back.
GET_LOCK()
aborts and
returns NULL
.
An INSERT DELAYED
thread quickly
flushes (inserts) all rows it has in memory and then
terminates.
If the thread is in the table lock handler (state:
Locked
), the table lock is quickly
aborted.
If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error message.
Killing a REPAIR TABLE
or
OPTIMIZE TABLE
operation on a
MyISAM
table results in a table that
is corrupted and unusable. Any reads or writes to such a
table fail until you optimize or repair it again
(without interruption).
LOAD INDEX INTO CACHEtbl_index_list
[,tbl_index_list
] ...tbl_index_list
:tbl_name
[[INDEX|KEY] (index_name
[,index_name
] ...)] [IGNORE LEAVES]
The LOAD INDEX INTO CACHE
statement
preloads a table index into the key cache to which it has been
assigned by an explicit CACHE INDEX
statement, or into the default key cache otherwise.
LOAD INDEX INTO CACHE
is used only for
MyISAM
tables. It is not supported for
tables having user-defined partitioning (see
Section 21.5, “Restrictions and Limitations on Partitioning”.)
The IGNORE LEAVES
modifier causes only
blocks for the non-leaf nodes of the index to be preloaded.
The following statement preloads nodes (index blocks) of
indexes for the tables t1
and
t2
:
mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+
This statement preloads all index blocks from
t1
. It preloads only blocks for the
non-leaf nodes from t2
.
The syntax of LOAD INDEX INTO CACHE
enables
you to specify that only particular indexes from a table
should be preloaded. The current implementation preloads all
the table's indexes into the cache, so there is no reason to
specify anything other than the table name.
LOAD INDEX INTO CACHE ... IGNORE LEAVES
fails unless all indexes in a table have the same block size.
(Prior to MySQL 5.1.19, it fails even without IGNORE
LEAVES
.) You can determine index block sizes for a
table by using myisamchk -dv and checking
the Blocksize
column.
RESETreset_option
[,reset_option
] ...
The RESET
statement is used to clear the
state of various server operations. You must have the
RELOAD
privilege to execute
RESET
.
RESET
acts as a stronger version of the
FLUSH
statement. See
Section 12.5.5.2, “FLUSH
Syntax”.
reset_option
can be any of the
following:
MASTER
Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.
QUERY CACHE
Removes all query results from the query cache.
SLAVE
Makes the slave forget its replication position in the master binary logs. Also resets the relay log by deleting any existing relay log files and beginning a new one.
This section describes SQL statements related to replication. One group of statements is used for controlling master servers. The other is used for controlling slave servers.
Replication can be controlled through the SQL interface. This section discusses statements for managing master replication servers. Section 12.6.2, “SQL Statements for Controlling Slave Servers”, discusses statements for managing slave servers.
PURGE {MASTER | BINARY} LOGS TO 'log_name
' PURGE {MASTER | BINARY} LOGS BEFORE 'date
'
Deletes all the binary logs listed in the log index prior to the specified log or date. The logs also are removed from the list recorded in the log index file, so that the given log becomes the first.
This statement has no effect if the --log-bin
option has not been enabled.
Example:
PURGE MASTER LOGS TO 'mysql-bin.010'; PURGE MASTER LOGS BEFORE '2003-04-02 22:46:26';
The BEFORE
variant's
date
argument can be in
'YYYY-MM-DD hh:mm:ss'
format.
MASTER
and BINARY
are
synonyms.
This statement is safe to run while slaves are replicating. You do not need to stop them. If you have an active slave that currently is reading one of the logs you are trying to delete, this statement does nothing and fails with an error. However, if a slave is dormant and you happen to purge one of the logs it has yet to read, the slave will be unable to replicate after it comes up.
To safely purge logs, follow this procedure:
On each slave server, use SHOW SLAVE
STATUS
to check which log it is reading.
Obtain a listing of the binary logs on the master server
with SHOW BINARY LOGS
.
Determine the earliest log among all the slaves. This is the target log. If all the slaves are up to date, this is the last log on the list.
Make a backup of all the logs you are about to delete. (This step is optional, but always advisable.)
Purge all logs up to but not including the target log.
You can also set the expire_logs_days
system variable to expire binary log files automatically after
a given number of days (see
Section 5.1.3, “System Variables”). If you are using
replication, you should set the variable no lower than the
maximum number of days your slaves might lag behind the
master.
Prior to MySQL 5.1.24, PURGE BINARY LOGS TO
and PURGE BINARY LOGS BEFORE
did not behave
in the same way (and neither one behaved correctly) when
binary log files listed in the .index
file had been removed from the system by some other means
(such as using rm on Linux). Beginning with MySQL 5.1.24, both
variants of the statement fail with an error in such cases.
(Bug#18199, Bug#18453) You can handle such errors by editing
the .index
file (which is a simple text
file) manually and insuring that it lists only the binlog
files that are actually present, then running again the
PURGE BINARY LOGS
statement that failed.
RESET MASTER
Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.
SET SQL_LOG_BIN = {0|1}
Disables or enables binary logging for the current connection
(SQL_LOG_BIN
is a session variable) if the
client has the SUPER
privilege. The
statement is refused with an error if the client does not have
that privilege.
SHOW BINLOG EVENTS [IN 'log_name
'] [FROMpos
] [LIMIT [offset
,]row_count
]
Shows the events in the binary log. If you do not specify
'
, the
first binary log is displayed.
log_name
'
The LIMIT
clause has the same syntax as for
the SELECT
statement. See
Section 12.2.7, “SELECT
Syntax”.
Issuing a SHOW BINLOG EVENTS
with no
LIMIT
clause could start a very time- and
resource-consuming process because the server returns to the
client the complete contents of the binary log (which
includes all statements executed by the server that modify
data). As an alternative to SHOW BINLOG
EVENTS
, use the mysqlbinlog
utility to save the binary log to a text file for later
examination and analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.
Events relating to the setting of variables are not included
in the output from SHOW BINLOG EVENTS
. To
get complete coverage of events within a binary log, use
mysqlbinlog
.
SHOW BINARY LOGS SHOW MASTER LOGS
Lists the binary log files on the server. This statement is
used as part of the procedure described in
Section 12.6.1.1, “PURGE MASTER LOGS
Syntax”, that shows how to
determine which logs can be purged.
mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+
SHOW MASTER LOGS
is equivalent to
SHOW BINARY LOGS
.
SHOW MASTER STATUS
Provides status information about the binary log files of the master. Example:
mysql> SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+
SHOW SLAVE HOSTS
Displays a list of replication slaves currently registered
with the master. Only slaves started with the
--report-host=
option are visible in this list.
slave_name
The list is displayed on any server (not just the master server). The output looks like this:
mysql> SHOW SLAVE HOSTS
;
+------------+-----------+------+-----------+
| Server_id | Host | Port | Master_id |
+------------+-----------+------+-----------+
| 192168010 | iconnect2 | 3306 | 192168011 |
| 1921680101 | athena | 3306 | 192168011 |
+------------+-----------+------+-----------+
Server_id
: The unique server ID of the
slave server, as configured in the server's option file,
or on the command line with
--server-id=
.
value
Host
: The host name of the slave
server, as configured in the server's option file, or on
the command line with
--report-host=
.
Note that this can differ from the machine name as
configured in the operating system.
value
Port
: The port the slave server is
listening on.
Master_id
: The unique server ID of the
master server that the slave server is replicating from.
Some MySQL versions report another variable,
Rpl_recovery_rank
. This variable was never
used, and was eventually removed.
CHANGE MASTER TO
SyntaxLOAD DATA FROM MASTER
SyntaxLOAD TABLE tbl_name
FROM
MASTER
SyntaxMASTER_POS_WAIT()
SyntaxRESET SLAVE
SyntaxSET GLOBAL SQL_SLAVE_SKIP_COUNTER
SyntaxSHOW SLAVE STATUS
SyntaxSTART SLAVE
SyntaxSTOP SLAVE
SyntaxReplication can be controlled through the SQL interface. This section discusses statements for managing slave replication servers. Section 12.6.1, “SQL Statements for Controlling Master Servers”, discusses statements for managing master servers.
CHANGE MASTER TOmaster_def
[,master_def
] ...master_def
: MASTER_BIND = 'interface_name
' | MASTER_HOST = 'host_name
' | MASTER_USER = 'user_name
' | MASTER_PASSWORD = 'password
' | MASTER_PORT =port_num
| MASTER_CONNECT_RETRY =interval
| MASTER_HEARTBEAT_PERIOD =interval
| MASTER_LOG_FILE = 'master_log_name
' | MASTER_LOG_POS =master_log_pos
| RELAY_LOG_FILE = 'relay_log_name
' | RELAY_LOG_POS =relay_log_pos
| MASTER_SSL = {0|1} | MASTER_SSL_CA = 'ca_file_name
' | MASTER_SSL_CAPATH = 'ca_directory_name
' | MASTER_SSL_CERT = 'cert_file_name
' | MASTER_SSL_KEY = 'key_file_name
' | MASTER_SSL_CIPHER = 'cipher_list
' | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
CHANGE MASTER TO
changes the parameters
that the slave server uses for connecting to and communicating
with the master server. It also updates the contents of the
master.info
and
relay-log.info
files.
MASTER_USER
,
MASTER_PASSWORD
,
MASTER_SSL
,
MASTER_SSL_CA
,
MASTER_SSL_CAPATH
,
MASTER_SSL_CERT
,
MASTER_SSL_KEY
,
MASTER_SSL_CIPHER
, and
MASTER_SSL_VERIFY_SERVER_CERT
provide
information to the slave about how to connect to its master.
MASTER_SSL_VERIFY_SERVER_CERT
was added in
MySQL 5.1.18. It is used as described for the
--ssl-verify-server-cert
option in
Section 5.5.7.3, “SSL Command Options”.
MASTER_CONNECT_RETRY
specifies how many
seconds to wait between connect retries. The default is 60.
The number of reconnection attempts is
limited by the --master-retry-count
server
option; for more information, see
Section 19.1.3, “Replication Options and Variables”.
The SSL options (MASTER_SSL
,
MASTER_SSL_CA
,
MASTER_SSL_CAPATH
,
MASTER_SSL_CERT
,
MASTER_SSL_KEY
,
MASTER_SSL_CIPHER
), and
MASTER_SSL_VERIFY_SERVER_CERT
can be
changed even on slaves that are compiled without SSL support.
They are saved to the master.info
file,
but are ignored unless you use a server that has SSL support
enabled.
If you don't specify a given parameter, it keeps its old value, except as indicated in the following discussion. For example, if the password to connect to your MySQL master has changed, you just need to issue these statements to tell the slave about the new password:
STOP SLAVE; -- if replication was running CHANGE MASTER TO MASTER_PASSWORD='new3cret'; START SLAVE; -- if you want to restart replication
There is no need to specify the parameters that do not change (host, port, user, and so forth).
MASTER_HOST
and
MASTER_PORT
are the hostname (or IP
address) of the master host and its TCP/IP port. Note that if
MASTER_HOST
is equal to
localhost
, then, like in other parts of
MySQL, the port number might be ignored.
MASTER_BIND
is for use on replication
slaves having multiple network interfaces, and determines
which of the slave's network interfaces is chosen for
connecting to the master. It is also possible to determine
which network interface is to be used in such cases by
starting the slave mysqld process with the
--master-bind
option.
The ability to bind a replication slave to specific network interface was added in MySQL Cluster NDB 6.3.4.
MASTER_HEARTBEAT_PERIOD
is used to set the
interval in seconds between replication heartbeats. Whenever
the master's binlog is updated with an event, the waiting
period for the next heartbeat is reset.
interval
is a decimal value having
the range 0 to 4294967 seconds and a resolution to hundredths
of a second; the smallest nonzero value is 0.001. Heartbeats
are sent by the master only if there are no unsent events in
the binlog file for a period longer than
interval
.
Setting interval
to 0 disables
heartbeats altogether. The default value for
interval
is equal to the value of
slave_net_timeout
divided by 2.
Setting @@global.slave_net_timeout
to a
value less than that of the current heartbeat interval
results in a warning being issued.
Issuing RESET SLAVE
resets the hearbeat
interval to the default.
MASTER_HEARTBEAT_PERIOD
was added in MySQL
Cluster NDB 6.3.4.
Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.
If you specify MASTER_HOST
or
MASTER_PORT
, the slave assumes that the
master server is different from before (even if you specify a
host or port value that is the same as the current value.) In
this case, the old values for the master binary log name and
position are considered no longer applicable, so if you do not
specify MASTER_LOG_FILE
and
MASTER_LOG_POS
in the statement,
MASTER_LOG_FILE=''
and
MASTER_LOG_POS=4
are silently appended to
it.
MASTER_LOG_FILE
and
MASTER_LOG_POS
are the coordinates at which
the slave I/O thread should begin reading from the master the
next time the thread starts. If you specify either of them,
you cannot specify RELAY_LOG_FILE
or
RELAY_LOG_POS
. If neither of
MASTER_LOG_FILE
or
MASTER_LOG_POS
are specified, the slave
uses the last coordinates of the slave SQL
thread before CHANGE MASTER
was
issued. This ensures that there is no discontinuity in
replication, even if the slave SQL thread was late compared to
the slave I/O thread, when you merely want to change, say, the
password to use.
CHANGE MASTER
deletes all relay
log files and starts a new one, unless you specify
RELAY_LOG_FILE
or
RELAY_LOG_POS
. In that case, relay logs are
kept; the relay_log_purge
global variable
is set silently to 0.
CHANGE MASTER
is useful for setting up a
slave when you have the snapshot of the master and have
recorded the log and the offset corresponding to it. After
loading the snapshot into the slave, you can run
CHANGE MASTER TO
MASTER_LOG_FILE='
on the slave.
log_name_on_master
',
MASTER_LOG_POS=log_offset_on_master
The following example changes the master and master's binary log coordinates. This is used when you want to set up the slave to replicate the master:
CHANGE MASTER TO MASTER_HOST='master2.mycompany.com', MASTER_USER='replication', MASTER_PASSWORD='bigs3cret', MASTER_PORT=3306, MASTER_LOG_FILE='master2-bin.001', MASTER_LOG_POS=4, MASTER_CONNECT_RETRY=10;
The next example shows an operation that is less frequently
employed. It is used when the slave has relay logs that you
want it to execute again for some reason. To do this, the
master need not be reachable. You need only use
CHANGE MASTER TO
and start the SQL thread
(START SLAVE SQL_THREAD
):
CHANGE MASTER TO RELAY_LOG_FILE='slave-relay-bin.006', RELAY_LOG_POS=4025;
You can even use the second operation in a non-replication
setup with a standalone, non-slave server for recovery
following a crash. Suppose that your server has crashed and
you have restored a backup. You want to replay the server's
own binary logs (not relay logs, but regular binary logs),
named (for example) myhost-bin.*
. First,
make a backup copy of these binary logs in some safe place, in
case you don't exactly follow the procedure below and
accidentally have the server purge the binary logs. Use
SET GLOBAL relay_log_purge=0
for additional
safety. Then start the server without the
--log-bin
option, Instead, use the
--replicate-same-server-id
,
--relay-log=myhost-bin
(to make the server
believe that these regular binary logs are relay logs) and
--skip-slave-start
options. After the server
starts, issue these statements:
CHANGE MASTER TO RELAY_LOG_FILE='myhost-bin.153', RELAY_LOG_POS=410, MASTER_HOST='some_dummy_string'; START SLAVE SQL_THREAD;
The server reads and executes its own binary logs, thus
achieving crash recovery. Once the recovery is finished, run
STOP SLAVE
, shut down the server, delete
the master.info
and
relay-log.info
files, and restart the
server with its original options.
Specifying the MASTER_HOST
option (even
with a dummy value) is required to make the server think it is
a slave.
LOAD DATA FROM MASTER
This feature is deprecated. We recommend not using it anymore. It is subject to removal in a future version of MySQL.
Since the current implementation of LOAD DATA FROM
MASTER
and LOAD TABLE FROM MASTER
is very limited, these statements are deprecated in versions
4.1 of MySQL and above. We will introduce a more advanced
technique (called “online backup”) in a future
version. That technique will have the additional advantage of
working with more storage engines.
For MySQL 5.1 and earlier, the recommended alternative
solution to using LOAD DATA FROM MASTER
or
LOAD TABLE FROM MASTER
is using
mysqldump or
mysqlhotcopy. The latter requires Perl and
two Perl modules (DBI
and
DBD:mysql
) and works for
MyISAM
and ARCHIVE
tables only. With mysqldump, you can create
SQL dumps on the master and pipe (or copy) these to a
mysql client on the slave. This has the
advantage of working for all storage engines, but can be quite
slow, since it works using SELECT
.
This statement takes a snapshot of the master and copies it to
the slave. It updates the values of
MASTER_LOG_FILE
and
MASTER_LOG_POS
so that the slave starts
replicating from the correct position. Any table and database
exclusion rules specified with the
--replicate-*-do-*
and
--replicate-*-ignore-*
options are honored.
--replicate-rewrite-db
is
not taken into account because a user
could use this option to set up a non-unique mapping such as
--replicate-rewrite-db="db1->db3"
and
--replicate-rewrite-db="db2->db3"
, which
would confuse the slave when loading tables from the master.
Use of this statement is subject to the following conditions:
It works only for MyISAM
tables.
Attempting to load a non-MyISAM
table
results in the following error:
ERROR 1189 (08S01): Net error reading from master
It acquires a global read lock on the master while taking the snapshot, which prevents updates on the master during the load operation.
If you are loading large tables, you might have to increase
the values of net_read_timeout
and
net_write_timeout
on both the master and
slave servers. See Section 5.1.3, “System Variables”.
Note that LOAD DATA FROM MASTER
does
not copy any tables from the
mysql
database. This makes it easy to have
different users and privileges on the master and the slave.
To use LOAD DATA FROM MASTER
, the
replication account that is used to connect to the master must
have the RELOAD
and
SUPER
privileges on the master and the
SELECT
privilege for all master tables you
want to load. All master tables for which the user does not
have the SELECT
privilege are ignored by
LOAD DATA FROM MASTER
. This is because the
master hides them from the user: LOAD DATA FROM
MASTER
calls SHOW DATABASES
to
know the master databases to load, but SHOW
DATABASES
returns only databases for which the user
has some privilege. See Section 12.5.4.12, “SHOW DATABASES
Syntax”. On
the slave side, the user that issues LOAD DATA FROM
MASTER
must have privileges for dropping and
creating the databases and tables that are copied.
LOAD TABLE tbl_name
FROM MASTER
This feature is deprecated. We recommend not using it anymore. It is subject to removal in a future version of MySQL.
Since the current implementation of LOAD DATA FROM
MASTER
and LOAD TABLE FROM MASTER
is very limited, these statements are deprecated in versions
4.1 of MySQL and above. We will introduce a more advanced
technique (called “online backup”) in a future
version. That technique will have the additional advantage of
working with more storage engines.
For MySQL 5.1 and earlier, the recommended alternative
solution to using LOAD DATA FROM MASTER
or
LOAD TABLE FROM MASTER
is using
mysqldump or
mysqlhotcopy. The latter requires Perl and
two Perl modules (DBI
and
DBD:mysql
) and works for
MyISAM
and ARCHIVE
tables only. With mysqldump, you can create
SQL dumps on the master and pipe (or copy) these to a
mysql client on the slave. This has the
advantage of working for all storage engines, but can be quite
slow, since it works using SELECT
.
Transfers a copy of the table from the master to the slave.
This statement is implemented mainly debugging LOAD
DATA FROM MASTER
operations. To use LOAD
TABLE
, the account used for connecting to the master
server must have the RELOAD
and
SUPER
privileges on the master and the
SELECT
privilege for the master table to
load. On the slave side, the user that issues LOAD
TABLE FROM MASTER
must have privileges for dropping
and creating the table.
The conditions for LOAD DATA FROM MASTER
apply here as well. For example, LOAD TABLE FROM
MASTER
works only for MyISAM
tables. The timeout notes for LOAD DATA FROM
MASTER
apply as well.
MASTER_POS_WAIT()
SyntaxSELECT MASTER_POS_WAIT('master_log_file
',master_log_pos
[,timeout
])
This is actually a function, not a statement. It is used to ensure that the slave has read and executed events up to a given position in the master's binary log. See Section 11.11.4, “Miscellaneous Functions”, for a full description.
RESET SLAVE
RESET SLAVE
makes the slave forget its
replication position in the master's binary logs. This
statement is meant to be used for a clean start: It deletes
the master.info
and
relay-log.info
files, all the relay logs,
and starts a new relay log.
All relay logs are deleted, even if they have not been
completely executed by the slave SQL thread. (This is a
condition likely to exist on a replication slave if you have
issued a STOP SLAVE
statement or if the
slave is highly loaded.)
Connection information stored in the
master.info
file is immediately reset
using any values specified in the corresponding startup
options. This information includes values such as master host,
master port, master user, and master password. If the slave
SQL thread was in the middle of replicating temporary tables
when it was stopped, and RESET SLAVE
is
issued, these replicated temporary tables are deleted on the
slave.
SET GLOBAL SQL_SLAVE_SKIP_COUNTER = N
This statement skips the next N
events from the master. This is useful for recovering from
replication stops caused by a statement.
This statement is valid only when the slave thread is not running. Otherwise, it produces an error.
SHOW SLAVE STATUS
This statement provides status information on essential
parameters of the slave threads. If you issue this statement
using the mysql client, you can use a
\G
statement terminator rather than a
semicolon to obtain a more readable vertical layout:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: root
Master_Port: 3306
Connect_Retry: 3
Master_Log_File: gbichot-bin.005
Read_Master_Log_Pos: 79
Relay_Log_File: gbichot-relay-bin.005
Relay_Log_Pos: 548
Relay_Master_Log_File: gbichot-bin.005
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_Do_DB:
Replicate_Ignore_DB:
Last_Errno: 0
Last_Error:
Skip_Counter: 0
Exec_Master_Log_Pos: 79
Relay_Log_Space: 552
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:
Master_SSL_Cert:
Master_SSL_Cipher:
Master_SSL_Key:
Seconds_Behind_Master: 8
Master_SSL_Verify_Server_Cert: No
Last_IO_Errno: 0
Last_IO_Error:
Last_SQL_Errno: 0
Last_SQL_Error:
SHOW SLAVE STATUS
returns the following
fields:
Slave_IO_State
A copy of the State
field of the output
of SHOW PROCESSLIST
for the slave I/O
thread. This tells you what the thread is doing: trying to
connect to the master, waiting for events from the master,
reconnecting to the master, and so on. Possible states are
listed in
Section 19.4.1, “Replication Implementation Details”. It
is necessary to check this field for older versions of
MySQL which allowed the thread to continue running while
unsuccessfully trying to connect to the master. If it is
running, there is no problem; if it is not, you can find
the error in the Last_Error
field
(described below).
Master_Host
The current master host.
Master_User
The current user used to connect to the master.
Master_Port
The current master port.
Connect_Retry
The number of seconds between connect retries (default
60). This may be set with the CHANGE MASTER
TO
statement or
--master-connect-retry
option.
Master_Log_File
The name of the master binary log file from which the I/O thread is currently reading.
Read_Master_Log_Pos
The position up to which the I/O thread has read in the current master binary log.
Relay_Log_File
The name of the relay log file from which the SQL thread is currently reading and executing.
Relay_Log_Pos
The position up to which the SQL thread has read and executed in the current relay log.
Relay_Master_Log_File
The name of the master binary log file containing the most recent event executed by the SQL thread.
Slave_IO_Running
Whether the I/O thread is started and has connected
successfully to the master. For older versions of MySQL
(prior to 4.1.14 and 5.0.12)
Slave_IO_Running
is
YES
if the I/O thread is started, even
if the slave hasn't connected to the master yet.
Slave_SQL_Running
Whether the SQL thread is started.
Replicate_Do_DB
,
Replicate_Ignore_DB
The lists of databases that were specified with the
--replicate-do-db
and
--replicate-ignore-db
options, if any.
Replicate_Do_Table
,
Replicate_Ignore_Table
,
Replicate_Wild_Do_Table
,
Replicate_Wild_Ignore_Table
The lists of tables that were specified with the
--replicate-do-table
,
--replicate-ignore-table
,
--replicate-wild-do-table
, and
--replicate-wild-ignore_table
options, if
any.
Last_Errno
,
Last_Error
As of MySQL 5.1.20, these columns are aliases for
Last_SQL_Errno
and
Last_SQL_Error
. Before 5.1.20, they
indicate the error number and error message returned by
the most recently executed statement. An error number of 0
and message of the empty string mean “no
error.” If the Last_Error
value
is not empty, it also appears as a message in the slave's
error log.
Skip_Counter
The most recently used value for
SQL_SLAVE_SKIP_COUNTER
.
Exec_Master_Log_Pos
The position of the last event executed by the SQL thread
from the master's binary log
(Relay_Master_Log_File
).
(Relay_Master_Log_File
,
Exec_Master_Log_Pos
) in the master's
binary log corresponds to
(Relay_Log_File
,
Relay_Log_Pos
) in the relay log.
Relay_Log_Space
The total combined size of all existing relay logs.
Until_Condition
,
Until_Log_File
,
Until_Log_Pos
The values specified in the UNTIL
clause of the START SLAVE
statement.
Until_Condition
has these values:
None
if no UNTIL
clause was specified
Master
if the slave is reading
until a given position in the master's binary logs
Relay
if the slave is reading until
a given position in its relay logs
Until_Log_File
and
Until_Log_Pos
indicate the log filename
and position values that define the point at which the SQL
thread stops executing.
Master_SSL_Allowed
,
Master_SSL_CA_File
,
Master_SSL_CA_Path
,
Master_SSL_Cert
,
Master_SSL_Cipher
,
Master_SSL_Key
These fields show the SSL parameters used by the slave to connect to the master, if any.
Master_SSL_Allowed
has these values:
Yes
if an SSL connection to the
master is permitted
No
if an SSL connection to the
master is not permitted
Ignored
if an SSL connection is
permitted but the slave server does not have SSL
support enabled
The values of the other SSL-related fields correspond to
the values of the MASTER_SSL_CA
,
MASTER_SSL_CAPATH
,
MASTER_SSL_CERT
,
MASTER_SSL_CIPHER
,
MASTER_SSL_KEY
, and
MASTER_SSL_VERIFY_SERVER_CERT
options
to the CHANGE MASTER
statement. See
Section 12.6.2.1, “CHANGE MASTER TO
Syntax”.
MASTER_SSL_VERIFY_SERVER_CERT
was added
in MySQL 5.1.18.
Seconds_Behind_Master
This field is an indication of how “late” the slave is:
When the slave SQL thread is actively running (processing updates), this field is the number of seconds that have elapsed since the timestamp of the most recent event on the master executed by that thread.
When the SQL thread has caught up to the slave I/O thread and goes idle waiting for more events from the I/O thread, this field is zero.
In essence, this field measures the time difference in seconds between the slave SQL thread and the slave I/O thread.
If the network connection between master and slave is
fast, the slave I/O thread is very close to the master, so
this field is a good approximation of how late the slave
SQL thread is compared to the master. If the network is
slow, this is not a good
approximation; the slave SQL thread may quite often be
caught up with the slow-reading slave I/O thread, so
Seconds_Behind_Master
often shows a
value of 0, even if the I/O thread is late compared to the
master. In other words, this column is useful
only for fast networks.
This time difference computation works even though the
master and slave do not have identical clocks (the clock
difference is computed when the slave I/O thread starts,
and assumed to remain constant from then on).
Seconds_Behind_Master
is
NULL
(which means
“unknown”) if the slave SQL thread is not
running, or if the slave I/O thread is not running or not
connected to master. For example if the slave I/O thread
is sleeping for the number of seconds given by the
CHANGE MASTER TO
statement or
--master-connect-retry
option (default
60) before reconnecting, NULL
is shown,
as the slave cannot know what the master is doing, and so
cannot say reliably how late it is.
This field has one limitation. The timestamp is preserved
through replication, which means that, if a master M1 is
itself a slave of M0, any event from M1's binlog which
originates in replicating an event from M0's binlog has
the timestamp of that event. This enables MySQL to
replicate TIMESTAMP
successfully.
However, the drawback for
Seconds_Behind_Master
is that if M1
also receives direct updates from clients, the value
randomly deviates, because sometimes the last M1's event
is from M0 and sometimes it is the most recent timestamp
from a direct update.
Last_IO_Errno
,
Last_IO_Error
The error number and error message of the last error that
caused the I/O thread to stop. An error number of 0 and
message of the empty string mean “no error.”
If the Last_IO_Error
value is not
empty, it also appears as a message in the slave's error
log. These columns were added in MySQL 5.1.20.
Last_SQL_Errno
,
Last_SQL_Error
The error number and error message of the last error that
caused the SQL thread to stop. An error number of 0 and
message of the empty string mean “no error.”
If the Last_IO_Error
value is not
empty, it also appears as a message in the slave's error
log. These columns were added in MySQL 5.1.20.
Example:
Last_SQL_Errno: 1051 Last_SQL_Error: error 'Unknown table 'z'' on query 'drop table z'
The message indicates that the table z
existed on the master and was dropped there, but it did
not exist on the slave, so DROP TABLE
failed on the slave. (This might occur, for example, if
you forget to copy the table to the slave when setting up
replication.)
START SLAVE [thread_type
[,thread_type
] ... ] START SLAVE [SQL_THREAD] UNTIL MASTER_LOG_FILE = 'log_name
', MASTER_LOG_POS =log_pos
START SLAVE [SQL_THREAD] UNTIL RELAY_LOG_FILE = 'log_name
', RELAY_LOG_POS =log_pos
thread_type
: IO_THREAD | SQL_THREAD
START SLAVE
with no
thread_type
options starts both of
the slave threads. The I/O thread reads queries from the
master server and stores them in the relay log. The SQL thread
reads the relay log and executes the queries. START
SLAVE
requires the SUPER
privilege.
If START SLAVE
succeeds in starting the
slave threads, it returns without any error. However, even in
that case, it might be that the slave threads start and then
later stop (for example, because they do not manage to connect
to the master or read its binary logs, or some other problem).
START SLAVE
does not warn you about this.
You must check the slave's error log for error messages
generated by the slave threads, or check that they are running
satisfactorily with SHOW SLAVE STATUS
.
You can add IO_THREAD
and
SQL_THREAD
options to the statement to name
which of the threads to start.
An UNTIL
clause may be added to specify
that the slave should start and run until the SQL thread
reaches a given point in the master binary logs or in the
slave relay logs. When the SQL thread reaches that point, it
stops. If the SQL_THREAD
option is
specified in the statement, it starts only the SQL thread.
Otherwise, it starts both slave threads. If the SQL thread is
running, the UNTIL
clause is ignored and a
warning is issued.
For an UNTIL
clause, you must specify both
a log filename and position. Do not mix master and relay log
options.
Any UNTIL
condition is reset by a
subsequent STOP SLAVE
statement, a
START SLAVE
statement that includes no
UNTIL
clause, or a server restart.
The UNTIL
clause can be useful for
debugging replication, or to cause replication to proceed
until just before the point where you want to avoid having the
slave replicate a statement. For example, if an unwise
DROP TABLE
statement was executed on the
master, you can use UNTIL
to tell the slave
to execute up to that point but no farther. To find what the
event is, use mysqlbinlog with the master
logs or slave relay logs, or by using a SHOW BINLOG
EVENTS
statement.
If you are using UNTIL
to have the slave
process replicated queries in sections, it is recommended that
you start the slave with the
--skip-slave-start
option to prevent the SQL
thread from running when the slave server starts. It is
probably best to use this option in an option file rather than
on the command line, so that an unexpected server restart does
not cause it to be forgotten.
The SHOW SLAVE STATUS
statement includes
output fields that display the current values of the
UNTIL
condition.
In old versions of MySQL (before 4.0.5), this statement was
called SLAVE START
. This usage is still
accepted in MySQL 5.1 for backward compatibility,
but is deprecated.
STOP SLAVE [thread_type
[,thread_type
] ... ]thread_type
: IO_THREAD | SQL_THREAD
Stops the slave threads. STOP SLAVE
requires the SUPER
privilege.
Like START SLAVE
, this statement may be
used with the IO_THREAD
and
SQL_THREAD
options to name the thread or
threads to be stopped.
In old versions of MySQL (before 4.0.5), this statement was
called SLAVE STOP
. This usage is still
accepted in MySQL 5.1 for backward compatibility,
but is deprecated.
MySQL 5.1 provides support for server-side prepared
statements. This support takes advantage of the efficient
client/server binary protocol implemented in MySQL 4.1, provided
that you use an appropriate client programming interface.
Candidate interfaces include the MySQL C API client library (for C
programs), MySQL Connector/J (for Java programs), and MySQL
Connector/NET. For example, the C API provides a set of function
calls that make up its prepared statement API. See
Section 29.2.4, “C API Prepared Statements”. Other language
interfaces can provide support for prepared statements that use
the binary protocol by linking in the C client library, one
example being the
mysqli
extension, available in PHP 5.0 and later.
An alternative SQL interface to prepared statements is available. This interface is not as efficient as using the binary protocol through a prepared statement API, but requires no programming because it is available directly at the SQL level:
You can use it when no programming interface is available to you.
You can use it from any program that allows you to send SQL statements to the server to be executed, such as the mysql client program.
You can use it even if the client is using an old version of the client library. The only requirement is that you be able to connect to a server that is recent enough to support SQL syntax for prepared statements.
SQL syntax for prepared statements is intended to be used for situations such as these:
You want to test how prepared statements work in your application before coding it.
An application has problems executing prepared statements and you want to determine interactively what the problem is.
You want to create a test case that describes a problem you are having with prepared statements, so that you can file a bug report.
You need to use prepared statements but do not have access to a programming API that supports them.
SQL syntax for prepared statements is based on three SQL statements:
PREPARE
stmt_name
FROM
preparable_stmt
The PREPARE
statement prepares a statement
and assigns it a name, stmt_name
,
by which to refer to the statement later. Statement names are
not case sensitive. preparable_stmt
is either a string literal or a user variable that contains
the text of the statement. The text must represent a single
SQL statement, not multiple statements. Within the statement,
“?
” characters can be used as
parameter markers to indicate where data values are to be
bound to the query later when you execute it. The
“?
” characters should not be
enclosed within quotes, even if you intend to bind them to
string values. Parameter markers can be used only where data
values should appear, not for SQL keywords, identifiers, and
so forth.
If a prepared statement with the given name already exists, it is deallocated implicitly before the new statement is prepared. This means that if the new statement contains an error and cannot be prepared, an error is returned and no statement with the given name exists.
The scope of a prepared statement is the client session within which it is created. Other clients cannot see it.
EXECUTE
stmt_name
[USING
@var_name
[,
@var_name
] ...]
After preparing a statement, you execute it with an
EXECUTE
statement that refers to the
prepared statement name. If the prepared statement contains
any parameter markers, you must supply a
USING
clause that lists user variables
containing the values to be bound to the parameters. Parameter
values can be supplied only by user variables, and the
USING
clause must name exactly as many
variables as the number of parameter markers in the statement.
You can execute a given prepared statement multiple times, passing different variables to it or setting the variables to different values before each execution.
{DEALLOCATE | DROP} PREPARE
stmt_name
To deallocate a prepared statement, use the
DEALLOCATE PREPARE
statement. Attempting to
execute a prepared statement after deallocating it results in
an error.
A prepared statement is specific to the connection in which it was created. If you terminate a client session without deallocating a previously prepared statement, the server deallocates it automatically.
A prepared statement is also global to the connection. If you create a prepared statement within a stored routine, it is not deallocated when the stored routine ends.
To guard against too many prepared statements being created
simultaneously, the max_prepared_stmt_count
system variable can be set.
The following SQL statements can be used in prepared statements:
ALTER TABLE
, COMMIT
,
CREATE INDEX
, CREATE TABLE
,
DELETE
, DO
, DROP
INDEX
, DROP TABLE
,
INSERT
, RENAME TABLE
,
REPLACE
, SELECT
,
SET
, UPDATE
, and most
SHOW
statements.
As of MySQL 5.1.10, the following additional statements are supported:
ANALYZE TABLE OPTIMIZE TABLE REPAIR TABLE
As of MySQL 5.1.12, the following additional statements are supported:
CACHE INDEX CHANGE MASTER CHECKSUM {TABLE | TABLES} {CREATE | DROP} DATABASE {CREATE | RENAME | DROP} USER FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES | LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES} GRANT REVOKE KILL LOAD INDEX INTO CACHE RESET {MASTER | SLAVE | QUERY CACHE} SHOW BINLOG EVENTS SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW} SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS} SHOW {MASTER | BINARY} LOGS SHOW {MASTER | SLAVE} STATUS SLAVE {START | STOP} INSTALL PLUGIN UNINSTALL PLUGIN
Other statements are not yet supported.
Statements not allowed in SQL prepared statements are generally also not permitted in stored routines. Any exceptions to this rule are noted in Chapter 23, Stored Procedures and Functions.
The following examples show two equivalent ways of preparing a statement that computes the hypotenuse of a triangle given the lengths of the two sides.
The first example shows how to create a prepared statement by using a string literal to supply the text of the statement:
mysql>PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql>SET @a = 3;
mysql>SET @b = 4;
mysql>EXECUTE stmt1 USING @a, @b;
+------------+ | hypotenuse | +------------+ | 5 | +------------+ mysql>DEALLOCATE PREPARE stmt1;
The second example is similar, but supplies the text of the statement as a user variable:
mysql>SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql>PREPARE stmt2 FROM @s;
mysql>SET @a = 6;
mysql>SET @b = 8;
mysql>EXECUTE stmt2 USING @a, @b;
+------------+ | hypotenuse | +------------+ | 10 | +------------+ mysql>DEALLOCATE PREPARE stmt2;
Here is an additional example which demonstrates how to choose the table on which to perform a query at run time, by storing the name of the table as a user variable:
mysql>USE test;
mysql>CREATE TABLE t1 (a INT NOT NULL);
mysql>INSERT INTO t1 VALUES (4), (8), (11), (32), (80);
mysql>SET @table = 't1';
mysql>SET @s = CONCAT('SELECT * FROM ', @table);
mysql>PREPARE stmt3 FROM @s;
mysql>EXECUTE stmt3;
+----+ | a | +----+ | 4 | | 8 | | 11 | | 32 | | 80 | +----+ mysql>DEALLOCATE PREPARE stmt3;
Placeholders can be used for the arguments of the
LIMIT
clause when using prepared statements.
See Section 12.2.7, “SELECT
Syntax”.
SQL syntax for prepared statements cannot be used in nested
fashion. That is, a statement passed to PREPARE
cannot itself be a PREPARE
,
EXECUTE
, or DEALLOCATE
PREPARE
statement.
SQL syntax for prepared statements is distinct from using prepared
statement API calls. For example, you cannot use the
mysql_stmt_prepare()
C API
function to prepare a PREPARE
,
EXECUTE
, or DEALLOCATE
PREPARE
statement.
SQL syntax for prepared statements can be used within stored
procedures, but not in stored functions or triggers. However, a
cursor cannot be used for a dynamic statement that is prepared and
executed with PREPARE
and
EXECUTE
. The statement for a cursor is checked
at cursor creation time, so the statement cannot be dynamic.
SQL syntax for prepared statements does not support
multi-statements (that is, multiple statements within a single
string separated by “;
”
characters).
Before MySQL 5.1.17, prepared statements do not use the query cache. As of 5.1.17, prepared statements use the query cache under the conditions described in Section 7.5.4.1, “How the Query Cache Operates”.
As of MySQL 5.1.25, metadata changes to tables or views referred
to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. This
applies to prepared statements processed at the SQL level (using
the PREPARE
statement) and those processed
using the binary client-server protocol (using the
mysql_stmt_prepare()
C API
function).
Metadata changes occur for DDL statements such as those that
create, drop, alter, rename, or truncate tables, or that
analyze, optimize, or repair tables. Repreparation also occurs
after referenced tables or views are flushed from the table
definition cache, either implicitly to make room for new entries
in the cache, or explicitly due to FLUSH
TABLES
.
Repreparation is automatic, but to the extent that it occurs, performance of prepared statements is diminished.
When a statement is reprepared, the default database and SQL mode that were in effect for the original preparation are used.
Table content changes (for example, with
INSERT
or UPDATE
) do not
cause repreparation, nor do SELECT
statements.
An incompatibility with previous versions of MySQL is that a
prepared statement may return a different set of columns or
different column types from one execution to the next. For
example, if the prepared statement is SELECT * FROM
t1
, altering t1
to contain a
different number of columns causes the next execution to return
a number of columns different from the previous execution.
Older versions of the client library cannot handle this change in behavior. For applications that use prepared statements with a server that performs automatic repreparation, an upgrade to the new client library is strongly recommended.
The Com_stmt_reprepare
status variable tracks
the number of repreparations.